Symplectic structures and Hamiltonians of a mechanical system

It is shown that in the case of a mechanical system with a finite number of degrees of freedom in classical mechanics, any constant of motion can be used as Hamiltonian by defining appropriately the symplectic structure of the phase space (or, equivalently, the Poisson bracket) and that for a given...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista mexicana de física 2003-10, Vol.49 (5), p.445-449
Hauptverfasser: Torres del Castillo, G.F., Mendoza Torres, G.
Format: Artikel
Sprache:eng ; por
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is shown that in the case of a mechanical system with a finite number of degrees of freedom in classical mechanics, any constant of motion can be used as Hamiltonian by defining appropriately the symplectic structure of the phase space (or, equivalently, the Poisson bracket) and that for a given constant of motion, there are infinitely many symplectic structures that reproduce the equations of motion of the system.
ISSN:0035-001X