Effect of heating rate on reaustenitisation of low carbon niobium microalloyed steel
Austenite formation during a continuous heating in a low carbon niobium microalloyed steel with a pearlite and ferrite initial microstructure has been studied. Characteristic transformation temperatures, Ac 1 , Ac θ and Ac 3 and the evolution of austenite formation have been determined by combining...
Gespeichert in:
Veröffentlicht in: | Materials science and technology 2008-03, Vol.24 (3), p.266-272 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 272 |
---|---|
container_issue | 3 |
container_start_page | 266 |
container_title | Materials science and technology |
container_volume | 24 |
creator | Martín, San D. Cock, de T. García-Junceda, A. Caballero, F. G. Capdevila, C. de Andrés, C. García |
description | Austenite formation during a continuous heating in a low carbon niobium microalloyed steel with a pearlite and ferrite initial microstructure has been studied. Characteristic transformation temperatures, Ac
1
, Ac
θ
and Ac
3
and the evolution of austenite formation have been determined by combining dilatometry and metallography in a range of heating rates from 0˙05 to 10 K s
-1
. It has been observed that nucleation and growth of austenite depends highly on the applied heating rate. At low heating rates (0˙05 K s
-1
) nucleation of austenite takes place both at pearlite nodules and at ferrite grain boundaries, while for higher heating rates (≥0˙5 K s
-1
), nucleation at grain boundaries is barely present compared to the nucleation at pearlite nodules. The heating rate also affects the austenite growth path and morphology and, thus, the distribution of martensite in the dual phase microstructure obtained at room temperature. |
doi_str_mv | 10.1179/174328408X265640 |
format | Article |
fullrecord | <record><control><sourceid>proquest_sage_</sourceid><recordid>TN_cdi_sage_journals_10_1179_174328408X265640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1179_174328408X265640</sage_id><sourcerecordid>32824293</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-7e6c5f74000729ccf4139f89ec1295495fb5ffeade94e9de43c2aa97cb25adc33</originalsourceid><addsrcrecordid>eNp9kM9LwzAUx4MoOKd3j8WDt2qSpk2DJxnzBwy8TPAWsvRlZqTNTFrG_nszKggDPT3eN5_v45svQtcE3xHCxT3hrKA1w_UHrcqK4RM0OUh50vgpmmBa8RzXRXWOLmLcYIwrIcQELefGgO4zb7JPUL3t1llQPWS-ywKoIfbQ2d7G9JKUBDm_y7QKq7R11q_s0Gat1cEr5_wemiwZwF2iM6NchKufOUXvT_Pl7CVfvD2_zh4XuS4E6XMOlS4NZykMp0Jrw0ghTC1AEypKJkqzKlM61YBgIBpghaZKCa5XtFSNLoopuh3vboP_GiD2srVRg3OqAz9EmQqhjIoDeHMEbvwQupRNUpzqY7yuEoRHKH0nxgBGboNtVdhLguWhY3nccbLkoyWqNfze_Id_GHnbGR9atfPBNbJXe-eDCarTNoX-0_0N2zSPrg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201174786</pqid></control><display><type>article</type><title>Effect of heating rate on reaustenitisation of low carbon niobium microalloyed steel</title><source>SAGE Complete A-Z List</source><creator>Martín, San D. ; Cock, de T. ; García-Junceda, A. ; Caballero, F. G. ; Capdevila, C. ; de Andrés, C. García</creator><creatorcontrib>Martín, San D. ; Cock, de T. ; García-Junceda, A. ; Caballero, F. G. ; Capdevila, C. ; de Andrés, C. García</creatorcontrib><description>Austenite formation during a continuous heating in a low carbon niobium microalloyed steel with a pearlite and ferrite initial microstructure has been studied. Characteristic transformation temperatures, Ac
1
, Ac
θ
and Ac
3
and the evolution of austenite formation have been determined by combining dilatometry and metallography in a range of heating rates from 0˙05 to 10 K s
-1
. It has been observed that nucleation and growth of austenite depends highly on the applied heating rate. At low heating rates (0˙05 K s
-1
) nucleation of austenite takes place both at pearlite nodules and at ferrite grain boundaries, while for higher heating rates (≥0˙5 K s
-1
), nucleation at grain boundaries is barely present compared to the nucleation at pearlite nodules. The heating rate also affects the austenite growth path and morphology and, thus, the distribution of martensite in the dual phase microstructure obtained at room temperature.</description><identifier>ISSN: 0267-0836</identifier><identifier>EISSN: 1743-2847</identifier><identifier>DOI: 10.1179/174328408X265640</identifier><identifier>CODEN: MSCTEP</identifier><language>eng</language><publisher>London, England: Taylor & Francis</publisher><subject>Alloys ; AUSTENITE ; DILATOMETRY ; Grain boundaries ; MARTENSITE ; Metallurgy ; MICROALLOYED STEEL ; Microstructure</subject><ispartof>Materials science and technology, 2008-03, Vol.24 (3), p.266-272</ispartof><rights>2008 Maney Publishing 2008</rights><rights>2008 Maney Publishing</rights><rights>Copyright Institute of Materials Mar 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-7e6c5f74000729ccf4139f89ec1295495fb5ffeade94e9de43c2aa97cb25adc33</citedby><cites>FETCH-LOGICAL-c391t-7e6c5f74000729ccf4139f89ec1295495fb5ffeade94e9de43c2aa97cb25adc33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1179/174328408X265640$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1179/174328408X265640$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Martín, San D.</creatorcontrib><creatorcontrib>Cock, de T.</creatorcontrib><creatorcontrib>García-Junceda, A.</creatorcontrib><creatorcontrib>Caballero, F. G.</creatorcontrib><creatorcontrib>Capdevila, C.</creatorcontrib><creatorcontrib>de Andrés, C. García</creatorcontrib><title>Effect of heating rate on reaustenitisation of low carbon niobium microalloyed steel</title><title>Materials science and technology</title><description>Austenite formation during a continuous heating in a low carbon niobium microalloyed steel with a pearlite and ferrite initial microstructure has been studied. Characteristic transformation temperatures, Ac
1
, Ac
θ
and Ac
3
and the evolution of austenite formation have been determined by combining dilatometry and metallography in a range of heating rates from 0˙05 to 10 K s
-1
. It has been observed that nucleation and growth of austenite depends highly on the applied heating rate. At low heating rates (0˙05 K s
-1
) nucleation of austenite takes place both at pearlite nodules and at ferrite grain boundaries, while for higher heating rates (≥0˙5 K s
-1
), nucleation at grain boundaries is barely present compared to the nucleation at pearlite nodules. The heating rate also affects the austenite growth path and morphology and, thus, the distribution of martensite in the dual phase microstructure obtained at room temperature.</description><subject>Alloys</subject><subject>AUSTENITE</subject><subject>DILATOMETRY</subject><subject>Grain boundaries</subject><subject>MARTENSITE</subject><subject>Metallurgy</subject><subject>MICROALLOYED STEEL</subject><subject>Microstructure</subject><issn>0267-0836</issn><issn>1743-2847</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kM9LwzAUx4MoOKd3j8WDt2qSpk2DJxnzBwy8TPAWsvRlZqTNTFrG_nszKggDPT3eN5_v45svQtcE3xHCxT3hrKA1w_UHrcqK4RM0OUh50vgpmmBa8RzXRXWOLmLcYIwrIcQELefGgO4zb7JPUL3t1llQPWS-ywKoIfbQ2d7G9JKUBDm_y7QKq7R11q_s0Gat1cEr5_wemiwZwF2iM6NchKufOUXvT_Pl7CVfvD2_zh4XuS4E6XMOlS4NZykMp0Jrw0ghTC1AEypKJkqzKlM61YBgIBpghaZKCa5XtFSNLoopuh3vboP_GiD2srVRg3OqAz9EmQqhjIoDeHMEbvwQupRNUpzqY7yuEoRHKH0nxgBGboNtVdhLguWhY3nccbLkoyWqNfze_Id_GHnbGR9atfPBNbJXe-eDCarTNoX-0_0N2zSPrg</recordid><startdate>20080301</startdate><enddate>20080301</enddate><creator>Martín, San D.</creator><creator>Cock, de T.</creator><creator>García-Junceda, A.</creator><creator>Caballero, F. G.</creator><creator>Capdevila, C.</creator><creator>de Andrés, C. García</creator><general>Taylor & Francis</general><general>SAGE Publications</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20080301</creationdate><title>Effect of heating rate on reaustenitisation of low carbon niobium microalloyed steel</title><author>Martín, San D. ; Cock, de T. ; García-Junceda, A. ; Caballero, F. G. ; Capdevila, C. ; de Andrés, C. García</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-7e6c5f74000729ccf4139f89ec1295495fb5ffeade94e9de43c2aa97cb25adc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Alloys</topic><topic>AUSTENITE</topic><topic>DILATOMETRY</topic><topic>Grain boundaries</topic><topic>MARTENSITE</topic><topic>Metallurgy</topic><topic>MICROALLOYED STEEL</topic><topic>Microstructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martín, San D.</creatorcontrib><creatorcontrib>Cock, de T.</creatorcontrib><creatorcontrib>García-Junceda, A.</creatorcontrib><creatorcontrib>Caballero, F. G.</creatorcontrib><creatorcontrib>Capdevila, C.</creatorcontrib><creatorcontrib>de Andrés, C. García</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Materials science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martín, San D.</au><au>Cock, de T.</au><au>García-Junceda, A.</au><au>Caballero, F. G.</au><au>Capdevila, C.</au><au>de Andrés, C. García</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of heating rate on reaustenitisation of low carbon niobium microalloyed steel</atitle><jtitle>Materials science and technology</jtitle><date>2008-03-01</date><risdate>2008</risdate><volume>24</volume><issue>3</issue><spage>266</spage><epage>272</epage><pages>266-272</pages><issn>0267-0836</issn><eissn>1743-2847</eissn><coden>MSCTEP</coden><abstract>Austenite formation during a continuous heating in a low carbon niobium microalloyed steel with a pearlite and ferrite initial microstructure has been studied. Characteristic transformation temperatures, Ac
1
, Ac
θ
and Ac
3
and the evolution of austenite formation have been determined by combining dilatometry and metallography in a range of heating rates from 0˙05 to 10 K s
-1
. It has been observed that nucleation and growth of austenite depends highly on the applied heating rate. At low heating rates (0˙05 K s
-1
) nucleation of austenite takes place both at pearlite nodules and at ferrite grain boundaries, while for higher heating rates (≥0˙5 K s
-1
), nucleation at grain boundaries is barely present compared to the nucleation at pearlite nodules. The heating rate also affects the austenite growth path and morphology and, thus, the distribution of martensite in the dual phase microstructure obtained at room temperature.</abstract><cop>London, England</cop><pub>Taylor & Francis</pub><doi>10.1179/174328408X265640</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0267-0836 |
ispartof | Materials science and technology, 2008-03, Vol.24 (3), p.266-272 |
issn | 0267-0836 1743-2847 |
language | eng |
recordid | cdi_sage_journals_10_1179_174328408X265640 |
source | SAGE Complete A-Z List |
subjects | Alloys AUSTENITE DILATOMETRY Grain boundaries MARTENSITE Metallurgy MICROALLOYED STEEL Microstructure |
title | Effect of heating rate on reaustenitisation of low carbon niobium microalloyed steel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A57%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sage_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20heating%20rate%20on%20reaustenitisation%20of%20low%20carbon%20niobium%20microalloyed%20steel&rft.jtitle=Materials%20science%20and%20technology&rft.au=Mart%C3%ADn,%20San%20D.&rft.date=2008-03-01&rft.volume=24&rft.issue=3&rft.spage=266&rft.epage=272&rft.pages=266-272&rft.issn=0267-0836&rft.eissn=1743-2847&rft.coden=MSCTEP&rft_id=info:doi/10.1179/174328408X265640&rft_dat=%3Cproquest_sage_%3E32824293%3C/proquest_sage_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201174786&rft_id=info:pmid/&rft_sage_id=10.1179_174328408X265640&rfr_iscdi=true |