Methodology based on genetic optimisation to develop overall parsimony models for predicting temperature settings on annealing furnace
Developing better prediction models is crucial for the steelmaking industry to improve the continuous hot dip galvanising line (HDGL). This paper presents a genetic based methodology whereby a wrapper based scheme is optimised to generate overall parsimony models for predicting temperature set point...
Gespeichert in:
Veröffentlicht in: | Ironmaking & steelmaking 2014-02, Vol.41 (2), p.87-98 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 98 |
---|---|
container_issue | 2 |
container_start_page | 87 |
container_title | Ironmaking & steelmaking |
container_volume | 41 |
creator | Sanz-García, A. Fernández-Ceniceros, J. Fernández-Martínez, R. Martínez-de-Pisón, F. J. |
description | Developing better prediction models is crucial for the steelmaking industry to improve the continuous hot dip galvanising line (HDGL). This paper presents a genetic based methodology whereby a wrapper based scheme is optimised to generate overall parsimony models for predicting temperature set points in a continuous annealing furnace on an HDGL. This optimisation includes a dynamic penalty function to control model complexity and an early stopping criterion during the optimisation phase. The resulting models (multilayer perceptron neural networks) were trained using a database obtained from an HDGL operating in the north of Spain. The number of neurons in the unique hidden layer, the inputs selected and the training parameters were adjusted to achieve the lowest validation and mean testing errors. Finally, a comparative evaluation is reported to highlight our proposal's range of applicability, developing models with lower prediction errors, higher generalisation capacity and less complexity than a standard method. |
doi_str_mv | 10.1179/1743281212Y.0000000094 |
format | Article |
fullrecord | <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_sage_journals_10_1179_1743281212Y_0000000094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1179_1743281212Y.0000000094</sage_id><sourcerecordid>10.1179_1743281212Y.0000000094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-f3f9db8c86e394a423a9afba2f766d8bca287c427e124c243b2a10a9678fbca13</originalsourceid><addsrcrecordid>eNqFkN1KxDAQhYMouK6-guQFujZJbdpLWfwDxRu98CpM08kaSZOSRGVfwOe2ZRf0zrkZmHO-w3AIOWflijHZXjBZCd4wzvjrqtxPWx2QxSwUs3JIFqUoWdFyIY7JSUrvk0VKLhfk-xHzW-iDC5st7SBhT4OnG_SYraZhzHawCbKdjjnQHj_RhZGGT4zgHB0hJjsEv6VD6NElakKkY8Te6mz9hmYcxsmZPyLShHm-pTkfvEdws8N8RA8aT8mRAZfwbL-X5OXm-nl9Vzw83d6vrx4KLS5lLowwbd81uqlRtBVUXEALpgNuZF33TaeBN1JXXCLjleaV6DiwEtpaNmYSmViSeperY0gpolFjtAPErWKlmttUf9pUv21OoNiBCTao3sP8tkv_U1c7yvqpmQG-QnS9yrB1IZoIXtukxD8ZPx9bj1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Methodology based on genetic optimisation to develop overall parsimony models for predicting temperature settings on annealing furnace</title><source>SAGE Complete</source><creator>Sanz-García, A. ; Fernández-Ceniceros, J. ; Fernández-Martínez, R. ; Martínez-de-Pisón, F. J.</creator><creatorcontrib>Sanz-García, A. ; Fernández-Ceniceros, J. ; Fernández-Martínez, R. ; Martínez-de-Pisón, F. J.</creatorcontrib><description>Developing better prediction models is crucial for the steelmaking industry to improve the continuous hot dip galvanising line (HDGL). This paper presents a genetic based methodology whereby a wrapper based scheme is optimised to generate overall parsimony models for predicting temperature set points in a continuous annealing furnace on an HDGL. This optimisation includes a dynamic penalty function to control model complexity and an early stopping criterion during the optimisation phase. The resulting models (multilayer perceptron neural networks) were trained using a database obtained from an HDGL operating in the north of Spain. The number of neurons in the unique hidden layer, the inputs selected and the training parameters were adjusted to achieve the lowest validation and mean testing errors. Finally, a comparative evaluation is reported to highlight our proposal's range of applicability, developing models with lower prediction errors, higher generalisation capacity and less complexity than a standard method.</description><identifier>ISSN: 0301-9233</identifier><identifier>EISSN: 1743-2812</identifier><identifier>DOI: 10.1179/1743281212Y.0000000094</identifier><language>eng</language><publisher>London, England: Taylor & Francis</publisher><subject>Annealing furnace ; Artificial intelligence ; Genetic algorithms ; Hot dip galvanising line ; Overall models ; Parsimony criterion</subject><ispartof>Ironmaking & steelmaking, 2014-02, Vol.41 (2), p.87-98</ispartof><rights>W. S. Maney & Son Ltd 2014 2014</rights><rights>W. S. Maney & Son Ltd 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-f3f9db8c86e394a423a9afba2f766d8bca287c427e124c243b2a10a9678fbca13</citedby><cites>FETCH-LOGICAL-c357t-f3f9db8c86e394a423a9afba2f766d8bca287c427e124c243b2a10a9678fbca13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1179/1743281212Y.0000000094$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1179/1743281212Y.0000000094$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,777,781,21801,27906,27907,43603,43604</link.rule.ids></links><search><creatorcontrib>Sanz-García, A.</creatorcontrib><creatorcontrib>Fernández-Ceniceros, J.</creatorcontrib><creatorcontrib>Fernández-Martínez, R.</creatorcontrib><creatorcontrib>Martínez-de-Pisón, F. J.</creatorcontrib><title>Methodology based on genetic optimisation to develop overall parsimony models for predicting temperature settings on annealing furnace</title><title>Ironmaking & steelmaking</title><description>Developing better prediction models is crucial for the steelmaking industry to improve the continuous hot dip galvanising line (HDGL). This paper presents a genetic based methodology whereby a wrapper based scheme is optimised to generate overall parsimony models for predicting temperature set points in a continuous annealing furnace on an HDGL. This optimisation includes a dynamic penalty function to control model complexity and an early stopping criterion during the optimisation phase. The resulting models (multilayer perceptron neural networks) were trained using a database obtained from an HDGL operating in the north of Spain. The number of neurons in the unique hidden layer, the inputs selected and the training parameters were adjusted to achieve the lowest validation and mean testing errors. Finally, a comparative evaluation is reported to highlight our proposal's range of applicability, developing models with lower prediction errors, higher generalisation capacity and less complexity than a standard method.</description><subject>Annealing furnace</subject><subject>Artificial intelligence</subject><subject>Genetic algorithms</subject><subject>Hot dip galvanising line</subject><subject>Overall models</subject><subject>Parsimony criterion</subject><issn>0301-9233</issn><issn>1743-2812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkN1KxDAQhYMouK6-guQFujZJbdpLWfwDxRu98CpM08kaSZOSRGVfwOe2ZRf0zrkZmHO-w3AIOWflijHZXjBZCd4wzvjrqtxPWx2QxSwUs3JIFqUoWdFyIY7JSUrvk0VKLhfk-xHzW-iDC5st7SBhT4OnG_SYraZhzHawCbKdjjnQHj_RhZGGT4zgHB0hJjsEv6VD6NElakKkY8Te6mz9hmYcxsmZPyLShHm-pTkfvEdws8N8RA8aT8mRAZfwbL-X5OXm-nl9Vzw83d6vrx4KLS5lLowwbd81uqlRtBVUXEALpgNuZF33TaeBN1JXXCLjleaV6DiwEtpaNmYSmViSeperY0gpolFjtAPErWKlmttUf9pUv21OoNiBCTao3sP8tkv_U1c7yvqpmQG-QnS9yrB1IZoIXtukxD8ZPx9bj1A</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Sanz-García, A.</creator><creator>Fernández-Ceniceros, J.</creator><creator>Fernández-Martínez, R.</creator><creator>Martínez-de-Pisón, F. J.</creator><general>Taylor & Francis</general><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140201</creationdate><title>Methodology based on genetic optimisation to develop overall parsimony models for predicting temperature settings on annealing furnace</title><author>Sanz-García, A. ; Fernández-Ceniceros, J. ; Fernández-Martínez, R. ; Martínez-de-Pisón, F. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-f3f9db8c86e394a423a9afba2f766d8bca287c427e124c243b2a10a9678fbca13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Annealing furnace</topic><topic>Artificial intelligence</topic><topic>Genetic algorithms</topic><topic>Hot dip galvanising line</topic><topic>Overall models</topic><topic>Parsimony criterion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sanz-García, A.</creatorcontrib><creatorcontrib>Fernández-Ceniceros, J.</creatorcontrib><creatorcontrib>Fernández-Martínez, R.</creatorcontrib><creatorcontrib>Martínez-de-Pisón, F. J.</creatorcontrib><collection>CrossRef</collection><jtitle>Ironmaking & steelmaking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sanz-García, A.</au><au>Fernández-Ceniceros, J.</au><au>Fernández-Martínez, R.</au><au>Martínez-de-Pisón, F. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Methodology based on genetic optimisation to develop overall parsimony models for predicting temperature settings on annealing furnace</atitle><jtitle>Ironmaking & steelmaking</jtitle><date>2014-02-01</date><risdate>2014</risdate><volume>41</volume><issue>2</issue><spage>87</spage><epage>98</epage><pages>87-98</pages><issn>0301-9233</issn><eissn>1743-2812</eissn><abstract>Developing better prediction models is crucial for the steelmaking industry to improve the continuous hot dip galvanising line (HDGL). This paper presents a genetic based methodology whereby a wrapper based scheme is optimised to generate overall parsimony models for predicting temperature set points in a continuous annealing furnace on an HDGL. This optimisation includes a dynamic penalty function to control model complexity and an early stopping criterion during the optimisation phase. The resulting models (multilayer perceptron neural networks) were trained using a database obtained from an HDGL operating in the north of Spain. The number of neurons in the unique hidden layer, the inputs selected and the training parameters were adjusted to achieve the lowest validation and mean testing errors. Finally, a comparative evaluation is reported to highlight our proposal's range of applicability, developing models with lower prediction errors, higher generalisation capacity and less complexity than a standard method.</abstract><cop>London, England</cop><pub>Taylor & Francis</pub><doi>10.1179/1743281212Y.0000000094</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0301-9233 |
ispartof | Ironmaking & steelmaking, 2014-02, Vol.41 (2), p.87-98 |
issn | 0301-9233 1743-2812 |
language | eng |
recordid | cdi_sage_journals_10_1179_1743281212Y_0000000094 |
source | SAGE Complete |
subjects | Annealing furnace Artificial intelligence Genetic algorithms Hot dip galvanising line Overall models Parsimony criterion |
title | Methodology based on genetic optimisation to develop overall parsimony models for predicting temperature settings on annealing furnace |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T10%3A35%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Methodology%20based%20on%20genetic%20optimisation%20to%20develop%20overall%20parsimony%20models%20for%20predicting%20temperature%20settings%20on%20annealing%20furnace&rft.jtitle=Ironmaking%20&%20steelmaking&rft.au=Sanz-Garc%C3%ADa,%20A.&rft.date=2014-02-01&rft.volume=41&rft.issue=2&rft.spage=87&rft.epage=98&rft.pages=87-98&rft.issn=0301-9233&rft.eissn=1743-2812&rft_id=info:doi/10.1179/1743281212Y.0000000094&rft_dat=%3Csage_cross%3E10.1179_1743281212Y.0000000094%3C/sage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1179_1743281212Y.0000000094&rfr_iscdi=true |