Methodology based on genetic optimisation to develop overall parsimony models for predicting temperature settings on annealing furnace

Developing better prediction models is crucial for the steelmaking industry to improve the continuous hot dip galvanising line (HDGL). This paper presents a genetic based methodology whereby a wrapper based scheme is optimised to generate overall parsimony models for predicting temperature set point...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ironmaking & steelmaking 2014-02, Vol.41 (2), p.87-98
Hauptverfasser: Sanz-García, A., Fernández-Ceniceros, J., Fernández-Martínez, R., Martínez-de-Pisón, F. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 98
container_issue 2
container_start_page 87
container_title Ironmaking & steelmaking
container_volume 41
creator Sanz-García, A.
Fernández-Ceniceros, J.
Fernández-Martínez, R.
Martínez-de-Pisón, F. J.
description Developing better prediction models is crucial for the steelmaking industry to improve the continuous hot dip galvanising line (HDGL). This paper presents a genetic based methodology whereby a wrapper based scheme is optimised to generate overall parsimony models for predicting temperature set points in a continuous annealing furnace on an HDGL. This optimisation includes a dynamic penalty function to control model complexity and an early stopping criterion during the optimisation phase. The resulting models (multilayer perceptron neural networks) were trained using a database obtained from an HDGL operating in the north of Spain. The number of neurons in the unique hidden layer, the inputs selected and the training parameters were adjusted to achieve the lowest validation and mean testing errors. Finally, a comparative evaluation is reported to highlight our proposal's range of applicability, developing models with lower prediction errors, higher generalisation capacity and less complexity than a standard method.
doi_str_mv 10.1179/1743281212Y.0000000094
format Article
fullrecord <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_sage_journals_10_1179_1743281212Y_0000000094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1179_1743281212Y.0000000094</sage_id><sourcerecordid>10.1179_1743281212Y.0000000094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-f3f9db8c86e394a423a9afba2f766d8bca287c427e124c243b2a10a9678fbca13</originalsourceid><addsrcrecordid>eNqFkN1KxDAQhYMouK6-guQFujZJbdpLWfwDxRu98CpM08kaSZOSRGVfwOe2ZRf0zrkZmHO-w3AIOWflijHZXjBZCd4wzvjrqtxPWx2QxSwUs3JIFqUoWdFyIY7JSUrvk0VKLhfk-xHzW-iDC5st7SBhT4OnG_SYraZhzHawCbKdjjnQHj_RhZGGT4zgHB0hJjsEv6VD6NElakKkY8Te6mz9hmYcxsmZPyLShHm-pTkfvEdws8N8RA8aT8mRAZfwbL-X5OXm-nl9Vzw83d6vrx4KLS5lLowwbd81uqlRtBVUXEALpgNuZF33TaeBN1JXXCLjleaV6DiwEtpaNmYSmViSeperY0gpolFjtAPErWKlmttUf9pUv21OoNiBCTao3sP8tkv_U1c7yvqpmQG-QnS9yrB1IZoIXtukxD8ZPx9bj1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Methodology based on genetic optimisation to develop overall parsimony models for predicting temperature settings on annealing furnace</title><source>SAGE Complete</source><creator>Sanz-García, A. ; Fernández-Ceniceros, J. ; Fernández-Martínez, R. ; Martínez-de-Pisón, F. J.</creator><creatorcontrib>Sanz-García, A. ; Fernández-Ceniceros, J. ; Fernández-Martínez, R. ; Martínez-de-Pisón, F. J.</creatorcontrib><description>Developing better prediction models is crucial for the steelmaking industry to improve the continuous hot dip galvanising line (HDGL). This paper presents a genetic based methodology whereby a wrapper based scheme is optimised to generate overall parsimony models for predicting temperature set points in a continuous annealing furnace on an HDGL. This optimisation includes a dynamic penalty function to control model complexity and an early stopping criterion during the optimisation phase. The resulting models (multilayer perceptron neural networks) were trained using a database obtained from an HDGL operating in the north of Spain. The number of neurons in the unique hidden layer, the inputs selected and the training parameters were adjusted to achieve the lowest validation and mean testing errors. Finally, a comparative evaluation is reported to highlight our proposal's range of applicability, developing models with lower prediction errors, higher generalisation capacity and less complexity than a standard method.</description><identifier>ISSN: 0301-9233</identifier><identifier>EISSN: 1743-2812</identifier><identifier>DOI: 10.1179/1743281212Y.0000000094</identifier><language>eng</language><publisher>London, England: Taylor &amp; Francis</publisher><subject>Annealing furnace ; Artificial intelligence ; Genetic algorithms ; Hot dip galvanising line ; Overall models ; Parsimony criterion</subject><ispartof>Ironmaking &amp; steelmaking, 2014-02, Vol.41 (2), p.87-98</ispartof><rights>W. S. Maney &amp; Son Ltd 2014 2014</rights><rights>W. S. Maney &amp; Son Ltd 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-f3f9db8c86e394a423a9afba2f766d8bca287c427e124c243b2a10a9678fbca13</citedby><cites>FETCH-LOGICAL-c357t-f3f9db8c86e394a423a9afba2f766d8bca287c427e124c243b2a10a9678fbca13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1179/1743281212Y.0000000094$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1179/1743281212Y.0000000094$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,777,781,21801,27906,27907,43603,43604</link.rule.ids></links><search><creatorcontrib>Sanz-García, A.</creatorcontrib><creatorcontrib>Fernández-Ceniceros, J.</creatorcontrib><creatorcontrib>Fernández-Martínez, R.</creatorcontrib><creatorcontrib>Martínez-de-Pisón, F. J.</creatorcontrib><title>Methodology based on genetic optimisation to develop overall parsimony models for predicting temperature settings on annealing furnace</title><title>Ironmaking &amp; steelmaking</title><description>Developing better prediction models is crucial for the steelmaking industry to improve the continuous hot dip galvanising line (HDGL). This paper presents a genetic based methodology whereby a wrapper based scheme is optimised to generate overall parsimony models for predicting temperature set points in a continuous annealing furnace on an HDGL. This optimisation includes a dynamic penalty function to control model complexity and an early stopping criterion during the optimisation phase. The resulting models (multilayer perceptron neural networks) were trained using a database obtained from an HDGL operating in the north of Spain. The number of neurons in the unique hidden layer, the inputs selected and the training parameters were adjusted to achieve the lowest validation and mean testing errors. Finally, a comparative evaluation is reported to highlight our proposal's range of applicability, developing models with lower prediction errors, higher generalisation capacity and less complexity than a standard method.</description><subject>Annealing furnace</subject><subject>Artificial intelligence</subject><subject>Genetic algorithms</subject><subject>Hot dip galvanising line</subject><subject>Overall models</subject><subject>Parsimony criterion</subject><issn>0301-9233</issn><issn>1743-2812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkN1KxDAQhYMouK6-guQFujZJbdpLWfwDxRu98CpM08kaSZOSRGVfwOe2ZRf0zrkZmHO-w3AIOWflijHZXjBZCd4wzvjrqtxPWx2QxSwUs3JIFqUoWdFyIY7JSUrvk0VKLhfk-xHzW-iDC5st7SBhT4OnG_SYraZhzHawCbKdjjnQHj_RhZGGT4zgHB0hJjsEv6VD6NElakKkY8Te6mz9hmYcxsmZPyLShHm-pTkfvEdws8N8RA8aT8mRAZfwbL-X5OXm-nl9Vzw83d6vrx4KLS5lLowwbd81uqlRtBVUXEALpgNuZF33TaeBN1JXXCLjleaV6DiwEtpaNmYSmViSeperY0gpolFjtAPErWKlmttUf9pUv21OoNiBCTao3sP8tkv_U1c7yvqpmQG-QnS9yrB1IZoIXtukxD8ZPx9bj1A</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Sanz-García, A.</creator><creator>Fernández-Ceniceros, J.</creator><creator>Fernández-Martínez, R.</creator><creator>Martínez-de-Pisón, F. J.</creator><general>Taylor &amp; Francis</general><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140201</creationdate><title>Methodology based on genetic optimisation to develop overall parsimony models for predicting temperature settings on annealing furnace</title><author>Sanz-García, A. ; Fernández-Ceniceros, J. ; Fernández-Martínez, R. ; Martínez-de-Pisón, F. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-f3f9db8c86e394a423a9afba2f766d8bca287c427e124c243b2a10a9678fbca13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Annealing furnace</topic><topic>Artificial intelligence</topic><topic>Genetic algorithms</topic><topic>Hot dip galvanising line</topic><topic>Overall models</topic><topic>Parsimony criterion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sanz-García, A.</creatorcontrib><creatorcontrib>Fernández-Ceniceros, J.</creatorcontrib><creatorcontrib>Fernández-Martínez, R.</creatorcontrib><creatorcontrib>Martínez-de-Pisón, F. J.</creatorcontrib><collection>CrossRef</collection><jtitle>Ironmaking &amp; steelmaking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sanz-García, A.</au><au>Fernández-Ceniceros, J.</au><au>Fernández-Martínez, R.</au><au>Martínez-de-Pisón, F. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Methodology based on genetic optimisation to develop overall parsimony models for predicting temperature settings on annealing furnace</atitle><jtitle>Ironmaking &amp; steelmaking</jtitle><date>2014-02-01</date><risdate>2014</risdate><volume>41</volume><issue>2</issue><spage>87</spage><epage>98</epage><pages>87-98</pages><issn>0301-9233</issn><eissn>1743-2812</eissn><abstract>Developing better prediction models is crucial for the steelmaking industry to improve the continuous hot dip galvanising line (HDGL). This paper presents a genetic based methodology whereby a wrapper based scheme is optimised to generate overall parsimony models for predicting temperature set points in a continuous annealing furnace on an HDGL. This optimisation includes a dynamic penalty function to control model complexity and an early stopping criterion during the optimisation phase. The resulting models (multilayer perceptron neural networks) were trained using a database obtained from an HDGL operating in the north of Spain. The number of neurons in the unique hidden layer, the inputs selected and the training parameters were adjusted to achieve the lowest validation and mean testing errors. Finally, a comparative evaluation is reported to highlight our proposal's range of applicability, developing models with lower prediction errors, higher generalisation capacity and less complexity than a standard method.</abstract><cop>London, England</cop><pub>Taylor &amp; Francis</pub><doi>10.1179/1743281212Y.0000000094</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0301-9233
ispartof Ironmaking & steelmaking, 2014-02, Vol.41 (2), p.87-98
issn 0301-9233
1743-2812
language eng
recordid cdi_sage_journals_10_1179_1743281212Y_0000000094
source SAGE Complete
subjects Annealing furnace
Artificial intelligence
Genetic algorithms
Hot dip galvanising line
Overall models
Parsimony criterion
title Methodology based on genetic optimisation to develop overall parsimony models for predicting temperature settings on annealing furnace
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T10%3A35%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Methodology%20based%20on%20genetic%20optimisation%20to%20develop%20overall%20parsimony%20models%20for%20predicting%20temperature%20settings%20on%20annealing%20furnace&rft.jtitle=Ironmaking%20&%20steelmaking&rft.au=Sanz-Garc%C3%ADa,%20A.&rft.date=2014-02-01&rft.volume=41&rft.issue=2&rft.spage=87&rft.epage=98&rft.pages=87-98&rft.issn=0301-9233&rft.eissn=1743-2812&rft_id=info:doi/10.1179/1743281212Y.0000000094&rft_dat=%3Csage_cross%3E10.1179_1743281212Y.0000000094%3C/sage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1179_1743281212Y.0000000094&rfr_iscdi=true