Front-End Analysis for Expert System Design

New system architectures, such as model-based reasoning and neural networks, have increased the difficulty of expert system design specification. In this paper, I suggest that to identify the appropriate subtask allocation and expert system architecture, certain preliminary questions should be asked...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Human Factors Society annual meeting 1991-09, Vol.35 (5), p.278-282
1. Verfasser: Gordon, Sallie E.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 282
container_issue 5
container_start_page 278
container_title Proceedings of the Human Factors Society annual meeting
container_volume 35
creator Gordon, Sallie E.
description New system architectures, such as model-based reasoning and neural networks, have increased the difficulty of expert system design specification. In this paper, I suggest that to identify the appropriate subtask allocation and expert system architecture, certain preliminary questions should be asked and the data evaluated. The front-end analysis described here is a framework loosely based on three levels of human cognition; analytical, rule-based, and implicit processing. Keeping these different types of cognitive task performance in mind, the framework specifies a set of factors to evaluate in the front-end analysis. Once data is collected for these factors, it is possible to evaluate whether an expert system should be designed for each specific subtask, and if so, what type of system architecture should be implemented. A suggested guideline for architecture choice is presented.
doi_str_mv 10.1177/154193129103500508
format Article
fullrecord <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_sage_journals_10_1177_154193129103500508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_154193129103500508</sage_id><sourcerecordid>10.1177_154193129103500508</sourcerecordid><originalsourceid>FETCH-LOGICAL-c151t-4c86aee8eecedc2e0884663d72dfe7316ac66f4c0458cf336b2db8be7c555c23</originalsourceid><addsrcrecordid>eNp9j81Kw0AURgexYGx9AVfZy9i5859lqakKBRd2HyaTOyWlTcpMBPP2NtSd4OrbnPPBIeQR2DOAMUtQEgoBvAAmFGOK2RuScdAFVUybW5JNAJ2IO3Kf0oExLoyQGXnaxL4baNk1-apzxzG1KQ99zMvvM8Yh_xzTgKf8BVO77xZkFtwx4cPvzsluU-7Wb3T78fq-Xm2pBwUDld5qh2gRPTaeI7NWai0aw5uARoB2XusgPZPK-iCErnlT2xqNV0p5LuaEX2997FOKGKpzbE8ujhWwaqqt_tZepOVVSm6P1aH_ipea9J_xAz1FVBE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Front-End Analysis for Expert System Design</title><source>SAGE Complete A-Z List</source><creator>Gordon, Sallie E.</creator><creatorcontrib>Gordon, Sallie E.</creatorcontrib><description>New system architectures, such as model-based reasoning and neural networks, have increased the difficulty of expert system design specification. In this paper, I suggest that to identify the appropriate subtask allocation and expert system architecture, certain preliminary questions should be asked and the data evaluated. The front-end analysis described here is a framework loosely based on three levels of human cognition; analytical, rule-based, and implicit processing. Keeping these different types of cognitive task performance in mind, the framework specifies a set of factors to evaluate in the front-end analysis. Once data is collected for these factors, it is possible to evaluate whether an expert system should be designed for each specific subtask, and if so, what type of system architecture should be implemented. A suggested guideline for architecture choice is presented.</description><identifier>ISSN: 1541-9312</identifier><identifier>ISSN: 0163-5182</identifier><identifier>EISSN: 2169-5067</identifier><identifier>DOI: 10.1177/154193129103500508</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><ispartof>Proceedings of the Human Factors Society annual meeting, 1991-09, Vol.35 (5), p.278-282</ispartof><rights>1991 Human Factors and Ergonomics Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c151t-4c86aee8eecedc2e0884663d72dfe7316ac66f4c0458cf336b2db8be7c555c23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/154193129103500508$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/154193129103500508$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,778,782,21806,27911,27912,43608,43609</link.rule.ids></links><search><creatorcontrib>Gordon, Sallie E.</creatorcontrib><title>Front-End Analysis for Expert System Design</title><title>Proceedings of the Human Factors Society annual meeting</title><description>New system architectures, such as model-based reasoning and neural networks, have increased the difficulty of expert system design specification. In this paper, I suggest that to identify the appropriate subtask allocation and expert system architecture, certain preliminary questions should be asked and the data evaluated. The front-end analysis described here is a framework loosely based on three levels of human cognition; analytical, rule-based, and implicit processing. Keeping these different types of cognitive task performance in mind, the framework specifies a set of factors to evaluate in the front-end analysis. Once data is collected for these factors, it is possible to evaluate whether an expert system should be designed for each specific subtask, and if so, what type of system architecture should be implemented. A suggested guideline for architecture choice is presented.</description><issn>1541-9312</issn><issn>0163-5182</issn><issn>2169-5067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNp9j81Kw0AURgexYGx9AVfZy9i5859lqakKBRd2HyaTOyWlTcpMBPP2NtSd4OrbnPPBIeQR2DOAMUtQEgoBvAAmFGOK2RuScdAFVUybW5JNAJ2IO3Kf0oExLoyQGXnaxL4baNk1-apzxzG1KQ99zMvvM8Yh_xzTgKf8BVO77xZkFtwx4cPvzsluU-7Wb3T78fq-Xm2pBwUDld5qh2gRPTaeI7NWai0aw5uARoB2XusgPZPK-iCErnlT2xqNV0p5LuaEX2997FOKGKpzbE8ujhWwaqqt_tZepOVVSm6P1aH_ipea9J_xAz1FVBE</recordid><startdate>199109</startdate><enddate>199109</enddate><creator>Gordon, Sallie E.</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199109</creationdate><title>Front-End Analysis for Expert System Design</title><author>Gordon, Sallie E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c151t-4c86aee8eecedc2e0884663d72dfe7316ac66f4c0458cf336b2db8be7c555c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gordon, Sallie E.</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the Human Factors Society annual meeting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gordon, Sallie E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Front-End Analysis for Expert System Design</atitle><jtitle>Proceedings of the Human Factors Society annual meeting</jtitle><date>1991-09</date><risdate>1991</risdate><volume>35</volume><issue>5</issue><spage>278</spage><epage>282</epage><pages>278-282</pages><issn>1541-9312</issn><issn>0163-5182</issn><eissn>2169-5067</eissn><abstract>New system architectures, such as model-based reasoning and neural networks, have increased the difficulty of expert system design specification. In this paper, I suggest that to identify the appropriate subtask allocation and expert system architecture, certain preliminary questions should be asked and the data evaluated. The front-end analysis described here is a framework loosely based on three levels of human cognition; analytical, rule-based, and implicit processing. Keeping these different types of cognitive task performance in mind, the framework specifies a set of factors to evaluate in the front-end analysis. Once data is collected for these factors, it is possible to evaluate whether an expert system should be designed for each specific subtask, and if so, what type of system architecture should be implemented. A suggested guideline for architecture choice is presented.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><doi>10.1177/154193129103500508</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1541-9312
ispartof Proceedings of the Human Factors Society annual meeting, 1991-09, Vol.35 (5), p.278-282
issn 1541-9312
0163-5182
2169-5067
language eng
recordid cdi_sage_journals_10_1177_154193129103500508
source SAGE Complete A-Z List
title Front-End Analysis for Expert System Design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T20%3A53%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Front-End%20Analysis%20for%20Expert%20System%20Design&rft.jtitle=Proceedings%20of%20the%20Human%20Factors%20Society%20annual%20meeting&rft.au=Gordon,%20Sallie%20E.&rft.date=1991-09&rft.volume=35&rft.issue=5&rft.spage=278&rft.epage=282&rft.pages=278-282&rft.issn=1541-9312&rft.eissn=2169-5067&rft_id=info:doi/10.1177/154193129103500508&rft_dat=%3Csage_cross%3E10.1177_154193129103500508%3C/sage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_154193129103500508&rfr_iscdi=true