Quadrotor trajectory tracking and obstacle avoidance by chaotic grey wolf optimization- based backstepping control with sliding mode extended state observer

In this paper, a new swarm intelligent-based backstepping control scheme is proposed for quadrotor trajectory tracking and obstacle avoidance. First, the sliding mode extended state observer (SMESO) is used to estimate different disturbances, and the tracking differentiator (TD) is integrated to enh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the Institute of Measurement and Control 2020-06, Vol.42 (9), p.1675-1689, Article 0142331219894401
Hauptverfasser: Wang, Yingxun, Ma, Yan, Cai, Zhihao, Zhao, Jiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a new swarm intelligent-based backstepping control scheme is proposed for quadrotor trajectory tracking and obstacle avoidance. First, the sliding mode extended state observer (SMESO) is used to estimate different disturbances, and the tracking differentiator (TD) is integrated to enhance the performance of backstepping control scheme. Then, the chaotic grey wolf optimization (CGWO) is developed with chaotic initialization and chaotic search to optimize the parameters of attitude and position controllers. Further, the virtual target guidance approach is proposed for quadrotor trajectory tracking and obstacle avoidance. Comparative simulations and Monte Carlo tests are carried out to demonstrate the effectiveness and robustness of the CGWO-based backstepping control scheme and virtual target guidance approach.
ISSN:0142-3312
1477-0369
DOI:10.1177/0142331219894401