Enhancing hardness, CTE and compressive response of powder metallurgy magnesium reinforced with metastable Al90Y10 powder particles

In the present study, magnesium composites containing pre-milled metastable Al 90 Y 10 particles were synthesised using powder metallurgy route incorporating microwave-assisted sintering and hot extrusion. The results of X-ray diffraction reveal that the pre-milled powder changed from crystalline st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Powder metallurgy 2016-07, Vol.59 (3), p.209-215
Hauptverfasser: Nguyen, Q. B., Quader, I., Sharon Nai, M. L., Seetharaman, S., Wai Leong, E. W., Almajid, A., Gupta, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 215
container_issue 3
container_start_page 209
container_title Powder metallurgy
container_volume 59
creator Nguyen, Q. B.
Quader, I.
Sharon Nai, M. L.
Seetharaman, S.
Wai Leong, E. W.
Almajid, A.
Gupta, M.
description In the present study, magnesium composites containing pre-milled metastable Al 90 Y 10 particles were synthesised using powder metallurgy route incorporating microwave-assisted sintering and hot extrusion. The results of X-ray diffraction reveal that the pre-milled powder changed from crystalline structure to metastable structure after 200 hours ball milling and the particle retained its metastable state in all composite samples. Microstructural characterisation shows that metastable particles were fairly distributed in the magnesium matrix and located along the grain boundaries. Further, when the amount of metastable particles increased, microhardness, 0.2%yield compressive strength and ultimate compressive strength increased significantly, coefficient of thermal expansion reduced gradually, while the compressive total strain remained almost the same. Work of fracture that indicates damage tolerance increased up to 66%. The interrelationship between microstructure and properties is discussed. Results suggest that the developed composites exhibit superior strength levels and are promising for compressive strength and damage tolerance-based engineering applications.
doi_str_mv 10.1080/00325899.2016.1144864
format Article
fullrecord <record><control><sourceid>sage_infor</sourceid><recordid>TN_cdi_sage_journals_10_1080_00325899_2016_1144864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1080_00325899.2016.1144864</sage_id><sourcerecordid>10.1080_00325899.2016.1144864</sourcerecordid><originalsourceid>FETCH-LOGICAL-i255t-4706ac71da523b301007b657d59bf3d4b772671bb54c74d7e7f93ec257e667793</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwCUj-AFL8jJMdVVUeUiU2ZcHKcmInTeXYkZ1Sdc2Pk_SxZXU1o3vvaA4AjxjNMMrQM0KU8CzPZwThdIYxY1nKrsAEC0YTkiN8DSajJxlNt-Auxi0aZp5lE_C7dBvlysbVcKOCdibGJ7hYL6FyGpa-7cKwaX4MHLTzLhroK9j5vTYBtqZX1u5CfYCtqodos2sHX-MqH0qj4b7pN0dT7FVhDZzbHH1jdIl3KvRNaU28BzeVstE8nHUKvl6X68V7svp8-1jMV0lDOO8TJlCqSoG14oQWFGGERJFyoXleVFSzQgiSClwUnJWCaWFElVNTEi5MmgqR0ykgp96oaiO3fhfccE5iJEeM8oJRjhjlGeMQejmFjm-1au-D1bJXB-tDFUZ0UdL_K_4AMTx7CA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enhancing hardness, CTE and compressive response of powder metallurgy magnesium reinforced with metastable Al90Y10 powder particles</title><source>SAGE Publications</source><creator>Nguyen, Q. B. ; Quader, I. ; Sharon Nai, M. L. ; Seetharaman, S. ; Wai Leong, E. W. ; Almajid, A. ; Gupta, M.</creator><creatorcontrib>Nguyen, Q. B. ; Quader, I. ; Sharon Nai, M. L. ; Seetharaman, S. ; Wai Leong, E. W. ; Almajid, A. ; Gupta, M.</creatorcontrib><description>In the present study, magnesium composites containing pre-milled metastable Al 90 Y 10 particles were synthesised using powder metallurgy route incorporating microwave-assisted sintering and hot extrusion. The results of X-ray diffraction reveal that the pre-milled powder changed from crystalline structure to metastable structure after 200 hours ball milling and the particle retained its metastable state in all composite samples. Microstructural characterisation shows that metastable particles were fairly distributed in the magnesium matrix and located along the grain boundaries. Further, when the amount of metastable particles increased, microhardness, 0.2%yield compressive strength and ultimate compressive strength increased significantly, coefficient of thermal expansion reduced gradually, while the compressive total strain remained almost the same. Work of fracture that indicates damage tolerance increased up to 66%. The interrelationship between microstructure and properties is discussed. Results suggest that the developed composites exhibit superior strength levels and are promising for compressive strength and damage tolerance-based engineering applications.</description><identifier>ISSN: 0032-5899</identifier><identifier>EISSN: 1743-2901</identifier><identifier>DOI: 10.1080/00325899.2016.1144864</identifier><language>eng</language><publisher>London, England: Taylor &amp; Francis</publisher><subject>Amorphous powder ; Magnesium ; Mechanical properties ; Microstructure</subject><ispartof>Powder metallurgy, 2016-07, Vol.59 (3), p.209-215</ispartof><rights>2016 Institute of Materials, Minerals and Mining 2016</rights><rights>2016 Institute of Materials, Minerals and Mining</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1080/00325899.2016.1144864$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1080/00325899.2016.1144864$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>Nguyen, Q. B.</creatorcontrib><creatorcontrib>Quader, I.</creatorcontrib><creatorcontrib>Sharon Nai, M. L.</creatorcontrib><creatorcontrib>Seetharaman, S.</creatorcontrib><creatorcontrib>Wai Leong, E. W.</creatorcontrib><creatorcontrib>Almajid, A.</creatorcontrib><creatorcontrib>Gupta, M.</creatorcontrib><title>Enhancing hardness, CTE and compressive response of powder metallurgy magnesium reinforced with metastable Al90Y10 powder particles</title><title>Powder metallurgy</title><description>In the present study, magnesium composites containing pre-milled metastable Al 90 Y 10 particles were synthesised using powder metallurgy route incorporating microwave-assisted sintering and hot extrusion. The results of X-ray diffraction reveal that the pre-milled powder changed from crystalline structure to metastable structure after 200 hours ball milling and the particle retained its metastable state in all composite samples. Microstructural characterisation shows that metastable particles were fairly distributed in the magnesium matrix and located along the grain boundaries. Further, when the amount of metastable particles increased, microhardness, 0.2%yield compressive strength and ultimate compressive strength increased significantly, coefficient of thermal expansion reduced gradually, while the compressive total strain remained almost the same. Work of fracture that indicates damage tolerance increased up to 66%. The interrelationship between microstructure and properties is discussed. Results suggest that the developed composites exhibit superior strength levels and are promising for compressive strength and damage tolerance-based engineering applications.</description><subject>Amorphous powder</subject><subject>Magnesium</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><issn>0032-5899</issn><issn>1743-2901</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNp9kMtOwzAQRS0EEqXwCUj-AFL8jJMdVVUeUiU2ZcHKcmInTeXYkZ1Sdc2Pk_SxZXU1o3vvaA4AjxjNMMrQM0KU8CzPZwThdIYxY1nKrsAEC0YTkiN8DSajJxlNt-Auxi0aZp5lE_C7dBvlysbVcKOCdibGJ7hYL6FyGpa-7cKwaX4MHLTzLhroK9j5vTYBtqZX1u5CfYCtqodos2sHX-MqH0qj4b7pN0dT7FVhDZzbHH1jdIl3KvRNaU28BzeVstE8nHUKvl6X68V7svp8-1jMV0lDOO8TJlCqSoG14oQWFGGERJFyoXleVFSzQgiSClwUnJWCaWFElVNTEi5MmgqR0ykgp96oaiO3fhfccE5iJEeM8oJRjhjlGeMQejmFjm-1au-D1bJXB-tDFUZ0UdL_K_4AMTx7CA</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Nguyen, Q. B.</creator><creator>Quader, I.</creator><creator>Sharon Nai, M. L.</creator><creator>Seetharaman, S.</creator><creator>Wai Leong, E. W.</creator><creator>Almajid, A.</creator><creator>Gupta, M.</creator><general>Taylor &amp; Francis</general><general>SAGE Publications</general><scope/></search><sort><creationdate>201607</creationdate><title>Enhancing hardness, CTE and compressive response of powder metallurgy magnesium reinforced with metastable Al90Y10 powder particles</title><author>Nguyen, Q. B. ; Quader, I. ; Sharon Nai, M. L. ; Seetharaman, S. ; Wai Leong, E. W. ; Almajid, A. ; Gupta, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i255t-4706ac71da523b301007b657d59bf3d4b772671bb54c74d7e7f93ec257e667793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amorphous powder</topic><topic>Magnesium</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Q. B.</creatorcontrib><creatorcontrib>Quader, I.</creatorcontrib><creatorcontrib>Sharon Nai, M. L.</creatorcontrib><creatorcontrib>Seetharaman, S.</creatorcontrib><creatorcontrib>Wai Leong, E. W.</creatorcontrib><creatorcontrib>Almajid, A.</creatorcontrib><creatorcontrib>Gupta, M.</creatorcontrib><jtitle>Powder metallurgy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Q. B.</au><au>Quader, I.</au><au>Sharon Nai, M. L.</au><au>Seetharaman, S.</au><au>Wai Leong, E. W.</au><au>Almajid, A.</au><au>Gupta, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing hardness, CTE and compressive response of powder metallurgy magnesium reinforced with metastable Al90Y10 powder particles</atitle><jtitle>Powder metallurgy</jtitle><date>2016-07</date><risdate>2016</risdate><volume>59</volume><issue>3</issue><spage>209</spage><epage>215</epage><pages>209-215</pages><issn>0032-5899</issn><eissn>1743-2901</eissn><abstract>In the present study, magnesium composites containing pre-milled metastable Al 90 Y 10 particles were synthesised using powder metallurgy route incorporating microwave-assisted sintering and hot extrusion. The results of X-ray diffraction reveal that the pre-milled powder changed from crystalline structure to metastable structure after 200 hours ball milling and the particle retained its metastable state in all composite samples. Microstructural characterisation shows that metastable particles were fairly distributed in the magnesium matrix and located along the grain boundaries. Further, when the amount of metastable particles increased, microhardness, 0.2%yield compressive strength and ultimate compressive strength increased significantly, coefficient of thermal expansion reduced gradually, while the compressive total strain remained almost the same. Work of fracture that indicates damage tolerance increased up to 66%. The interrelationship between microstructure and properties is discussed. Results suggest that the developed composites exhibit superior strength levels and are promising for compressive strength and damage tolerance-based engineering applications.</abstract><cop>London, England</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/00325899.2016.1144864</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0032-5899
ispartof Powder metallurgy, 2016-07, Vol.59 (3), p.209-215
issn 0032-5899
1743-2901
language eng
recordid cdi_sage_journals_10_1080_00325899_2016_1144864
source SAGE Publications
subjects Amorphous powder
Magnesium
Mechanical properties
Microstructure
title Enhancing hardness, CTE and compressive response of powder metallurgy magnesium reinforced with metastable Al90Y10 powder particles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T06%3A27%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20hardness,%20CTE%20and%20compressive%20response%20of%20powder%20metallurgy%20magnesium%20reinforced%20with%20metastable%20Al90Y10%20powder%20particles&rft.jtitle=Powder%20metallurgy&rft.au=Nguyen,%20Q.%20B.&rft.date=2016-07&rft.volume=59&rft.issue=3&rft.spage=209&rft.epage=215&rft.pages=209-215&rft.issn=0032-5899&rft.eissn=1743-2901&rft_id=info:doi/10.1080/00325899.2016.1144864&rft_dat=%3Csage_infor%3E10.1080_00325899.2016.1144864%3C/sage_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1080_00325899.2016.1144864&rfr_iscdi=true