Statistical Computing with R

preface Introduction Computational Statistics and Statistical Computing The R Environment Getting Started with R Using the R Online Help System Functions Arrays, Data Frames, and Lists Workspace and Files Using Scripts Using Packages Graphics Probability and Statistics Review Random Variables and Pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Rizzo, Maria L
Format: Buch
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Rizzo, Maria L
description preface Introduction Computational Statistics and Statistical Computing The R Environment Getting Started with R Using the R Online Help System Functions Arrays, Data Frames, and Lists Workspace and Files Using Scripts Using Packages Graphics Probability and Statistics Review Random Variables and Probability Some Discrete Distributions Some Continuous Distributions Multivariate Normal Distribution Limit Theorems Statistics Bayes' Theorem and Bayesian Statistics Markov Chains Methods for Generating Random Variables Introduction The Inverse Transform Method The Acceptance-Rejection Method Transformation Methods Sums and Mixtures Multivariate Distributions Stochastic Processes Exercises Visualization of Multivariate Data Introduction Panel Displays Surface Plots and 3D Scatter Plots Contour Plots Other 2D Representations of Data Other Approaches to Data Visualization Exercises Monte Carlo Integration and Variance Reduction Introduction Monte Carlo Integration Variance Reduction Antithetic Variables Control Variates Importance Sampling Stratified Sampling Stratified Importance Sampling Exercises R Code Monte Carlo Methods in Inference Introduction Monte Carlo Methods for Estimation Monte Carlo Methods for Hypothesis Tests Application Exercises Bootstrap and Jackknife The Bootstrap The Jackknife Jackknife-after-Bootstrap Bootstrap Confidence Intervals Better Bootstrap Confidence Intervals Application Exercises Permutation Tests Introduction Tests for Equal Distributions Multivariate Tests for Equal Distributions Application Exercises Markov Chain Monte Carlo Methods Introduction The Metropolis-Hastings Algorithm The Gibbs Sampler Monitoring Convergence Application Exercises R Code Probability Density Estimation Univariate Density Estimation Kernel Density Estimation Bivariate and Multivariate Density Estimation Other Methods of Density Estimation Exercises R Code Numerical Methods in R Introduction Root-Finding in One Dimension Numerical Integration Maximum Likelihood Problems 1D Optimization 2D Optimization The EM Algorithm Linear Programming-The Simplex Method Application Exercises APPENDIX A: Notation APPENDIX B: Working with Data Frames and Arrays Resampling and Data Partitioning Subsetting and Reshaping Data Data Entry and Data Analysis References Index.
doi_str_mv 10.1201/9781420010718
format Book
fullrecord <record><control><sourceid>proquest_safar</sourceid><recordid>TN_cdi_safari_books_v2_9781498786591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC1566014</sourcerecordid><originalsourceid>FETCH-LOGICAL-a51588-cd012057807e7e364b2688f4dd1b719ed8c45dc8c2ed86dd2ff70595267845693</originalsourceid><addsrcrecordid>eNpVj81LxDAQxSOiuKw9evPQg-CpOkkzyeSoZf2ABUHFa0mbVIN1uzZZ99-3ul48vffgx7w3jJ1wuOAC-KXRxKUA4KA57bHsX97fZSRJhBLhkM0MEGiSCo5YFmNoQCByMlDO2OlTsinEFFrb59Xwsd6ksHrNtyG95Y_H7KCzffTZn87Zy83iuborlg-399XVsrA49VDROph2oZ5avPalko1QRJ10jjeaG--olehaasVklXOi6zSgQaGmVahMOWdnu8PRdnYMdTMM77H-EvXvZ4Y0KTR8ws532HocPjc-ptr_kK1fpdH29eK64qgUcFl-A8EMTbY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype><pqid>EBC1566014</pqid></control><display><type>book</type><title>Statistical Computing with R</title><source>O'Reilly Online Learning: Academic/Public Library Edition</source><creator>Rizzo, Maria L</creator><creatorcontrib>Rizzo, Maria L</creatorcontrib><description>preface Introduction Computational Statistics and Statistical Computing The R Environment Getting Started with R Using the R Online Help System Functions Arrays, Data Frames, and Lists Workspace and Files Using Scripts Using Packages Graphics Probability and Statistics Review Random Variables and Probability Some Discrete Distributions Some Continuous Distributions Multivariate Normal Distribution Limit Theorems Statistics Bayes' Theorem and Bayesian Statistics Markov Chains Methods for Generating Random Variables Introduction The Inverse Transform Method The Acceptance-Rejection Method Transformation Methods Sums and Mixtures Multivariate Distributions Stochastic Processes Exercises Visualization of Multivariate Data Introduction Panel Displays Surface Plots and 3D Scatter Plots Contour Plots Other 2D Representations of Data Other Approaches to Data Visualization Exercises Monte Carlo Integration and Variance Reduction Introduction Monte Carlo Integration Variance Reduction Antithetic Variables Control Variates Importance Sampling Stratified Sampling Stratified Importance Sampling Exercises R Code Monte Carlo Methods in Inference Introduction Monte Carlo Methods for Estimation Monte Carlo Methods for Hypothesis Tests Application Exercises Bootstrap and Jackknife The Bootstrap The Jackknife Jackknife-after-Bootstrap Bootstrap Confidence Intervals Better Bootstrap Confidence Intervals Application Exercises Permutation Tests Introduction Tests for Equal Distributions Multivariate Tests for Equal Distributions Application Exercises Markov Chain Monte Carlo Methods Introduction The Metropolis-Hastings Algorithm The Gibbs Sampler Monitoring Convergence Application Exercises R Code Probability Density Estimation Univariate Density Estimation Kernel Density Estimation Bivariate and Multivariate Density Estimation Other Methods of Density Estimation Exercises R Code Numerical Methods in R Introduction Root-Finding in One Dimension Numerical Integration Maximum Likelihood Problems 1D Optimization 2D Optimization The EM Algorithm Linear Programming-The Simplex Method Application Exercises APPENDIX A: Notation APPENDIX B: Working with Data Frames and Arrays Resampling and Data Partitioning Subsetting and Reshaping Data Data Entry and Data Analysis References Index.</description><edition>1</edition><identifier>ISBN: 9781584885450</identifier><identifier>ISBN: 1584885459</identifier><identifier>ISBN: 9781498786591</identifier><identifier>ISBN: 1498786596</identifier><identifier>EISBN: 9781420010718</identifier><identifier>EISBN: 1420010719</identifier><identifier>EISBN: 9781498786591</identifier><identifier>EISBN: 1498786596</identifier><identifier>DOI: 10.1201/9781420010718</identifier><identifier>OCLC: 908078460</identifier><language>eng</language><publisher>London: CRC Press LLC</publisher><subject>Data processing ; Mathematical statistics</subject><creationdate>2007</creationdate><tpages>412</tpages><format>412</format><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>306,780,784,786,24762,27925</link.rule.ids></links><search><creatorcontrib>Rizzo, Maria L</creatorcontrib><title>Statistical Computing with R</title><description>preface Introduction Computational Statistics and Statistical Computing The R Environment Getting Started with R Using the R Online Help System Functions Arrays, Data Frames, and Lists Workspace and Files Using Scripts Using Packages Graphics Probability and Statistics Review Random Variables and Probability Some Discrete Distributions Some Continuous Distributions Multivariate Normal Distribution Limit Theorems Statistics Bayes' Theorem and Bayesian Statistics Markov Chains Methods for Generating Random Variables Introduction The Inverse Transform Method The Acceptance-Rejection Method Transformation Methods Sums and Mixtures Multivariate Distributions Stochastic Processes Exercises Visualization of Multivariate Data Introduction Panel Displays Surface Plots and 3D Scatter Plots Contour Plots Other 2D Representations of Data Other Approaches to Data Visualization Exercises Monte Carlo Integration and Variance Reduction Introduction Monte Carlo Integration Variance Reduction Antithetic Variables Control Variates Importance Sampling Stratified Sampling Stratified Importance Sampling Exercises R Code Monte Carlo Methods in Inference Introduction Monte Carlo Methods for Estimation Monte Carlo Methods for Hypothesis Tests Application Exercises Bootstrap and Jackknife The Bootstrap The Jackknife Jackknife-after-Bootstrap Bootstrap Confidence Intervals Better Bootstrap Confidence Intervals Application Exercises Permutation Tests Introduction Tests for Equal Distributions Multivariate Tests for Equal Distributions Application Exercises Markov Chain Monte Carlo Methods Introduction The Metropolis-Hastings Algorithm The Gibbs Sampler Monitoring Convergence Application Exercises R Code Probability Density Estimation Univariate Density Estimation Kernel Density Estimation Bivariate and Multivariate Density Estimation Other Methods of Density Estimation Exercises R Code Numerical Methods in R Introduction Root-Finding in One Dimension Numerical Integration Maximum Likelihood Problems 1D Optimization 2D Optimization The EM Algorithm Linear Programming-The Simplex Method Application Exercises APPENDIX A: Notation APPENDIX B: Working with Data Frames and Arrays Resampling and Data Partitioning Subsetting and Reshaping Data Data Entry and Data Analysis References Index.</description><subject>Data processing</subject><subject>Mathematical statistics</subject><isbn>9781584885450</isbn><isbn>1584885459</isbn><isbn>9781498786591</isbn><isbn>1498786596</isbn><isbn>9781420010718</isbn><isbn>1420010719</isbn><isbn>9781498786591</isbn><isbn>1498786596</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2007</creationdate><recordtype>book</recordtype><sourceid>OODEK</sourceid><recordid>eNpVj81LxDAQxSOiuKw9evPQg-CpOkkzyeSoZf2ABUHFa0mbVIN1uzZZ99-3ul48vffgx7w3jJ1wuOAC-KXRxKUA4KA57bHsX97fZSRJhBLhkM0MEGiSCo5YFmNoQCByMlDO2OlTsinEFFrb59Xwsd6ksHrNtyG95Y_H7KCzffTZn87Zy83iuborlg-399XVsrA49VDROph2oZ5avPalko1QRJ10jjeaG--olehaasVklXOi6zSgQaGmVahMOWdnu8PRdnYMdTMM77H-EvXvZ4Y0KTR8ws532HocPjc-ptr_kK1fpdH29eK64qgUcFl-A8EMTbY</recordid><startdate>2007</startdate><enddate>2007</enddate><creator>Rizzo, Maria L</creator><general>CRC Press LLC</general><general>Chapman and Hall/CRC</general><scope>OHILO</scope><scope>OODEK</scope></search><sort><creationdate>2007</creationdate><title>Statistical Computing with R</title><author>Rizzo, Maria L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a51588-cd012057807e7e364b2688f4dd1b719ed8c45dc8c2ed86dd2ff70595267845693</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Data processing</topic><topic>Mathematical statistics</topic><toplevel>online_resources</toplevel><creatorcontrib>Rizzo, Maria L</creatorcontrib><collection>O'Reilly Online Learning: Corporate Edition</collection><collection>O'Reilly Online Learning: Academic/Public Library Edition</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rizzo, Maria L</au><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Statistical Computing with R</btitle><date>2007</date><risdate>2007</risdate><isbn>9781584885450</isbn><isbn>1584885459</isbn><isbn>9781498786591</isbn><isbn>1498786596</isbn><eisbn>9781420010718</eisbn><eisbn>1420010719</eisbn><eisbn>9781498786591</eisbn><eisbn>1498786596</eisbn><abstract>preface Introduction Computational Statistics and Statistical Computing The R Environment Getting Started with R Using the R Online Help System Functions Arrays, Data Frames, and Lists Workspace and Files Using Scripts Using Packages Graphics Probability and Statistics Review Random Variables and Probability Some Discrete Distributions Some Continuous Distributions Multivariate Normal Distribution Limit Theorems Statistics Bayes' Theorem and Bayesian Statistics Markov Chains Methods for Generating Random Variables Introduction The Inverse Transform Method The Acceptance-Rejection Method Transformation Methods Sums and Mixtures Multivariate Distributions Stochastic Processes Exercises Visualization of Multivariate Data Introduction Panel Displays Surface Plots and 3D Scatter Plots Contour Plots Other 2D Representations of Data Other Approaches to Data Visualization Exercises Monte Carlo Integration and Variance Reduction Introduction Monte Carlo Integration Variance Reduction Antithetic Variables Control Variates Importance Sampling Stratified Sampling Stratified Importance Sampling Exercises R Code Monte Carlo Methods in Inference Introduction Monte Carlo Methods for Estimation Monte Carlo Methods for Hypothesis Tests Application Exercises Bootstrap and Jackknife The Bootstrap The Jackknife Jackknife-after-Bootstrap Bootstrap Confidence Intervals Better Bootstrap Confidence Intervals Application Exercises Permutation Tests Introduction Tests for Equal Distributions Multivariate Tests for Equal Distributions Application Exercises Markov Chain Monte Carlo Methods Introduction The Metropolis-Hastings Algorithm The Gibbs Sampler Monitoring Convergence Application Exercises R Code Probability Density Estimation Univariate Density Estimation Kernel Density Estimation Bivariate and Multivariate Density Estimation Other Methods of Density Estimation Exercises R Code Numerical Methods in R Introduction Root-Finding in One Dimension Numerical Integration Maximum Likelihood Problems 1D Optimization 2D Optimization The EM Algorithm Linear Programming-The Simplex Method Application Exercises APPENDIX A: Notation APPENDIX B: Working with Data Frames and Arrays Resampling and Data Partitioning Subsetting and Reshaping Data Data Entry and Data Analysis References Index.</abstract><cop>London</cop><pub>CRC Press LLC</pub><doi>10.1201/9781420010718</doi><oclcid>908078460</oclcid><tpages>412</tpages><edition>1</edition></addata></record>
fulltext fulltext
identifier ISBN: 9781584885450
ispartof
issn
language eng
recordid cdi_safari_books_v2_9781498786591
source O'Reilly Online Learning: Academic/Public Library Edition
subjects Data processing
Mathematical statistics
title Statistical Computing with R
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A03%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_safar&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Statistical%20Computing%20with%20R&rft.au=Rizzo,%20Maria%20L&rft.date=2007&rft.isbn=9781584885450&rft.isbn_list=1584885459&rft.isbn_list=9781498786591&rft.isbn_list=1498786596&rft_id=info:doi/10.1201/9781420010718&rft_dat=%3Cproquest_safar%3EEBC1566014%3C/proquest_safar%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781420010718&rft.eisbn_list=1420010719&rft.eisbn_list=9781498786591&rft.eisbn_list=1498786596&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC1566014&rft_id=info:pmid/&rfr_iscdi=true