Deep Neural Networks-Enabled Intelligent Fault Diagnosis of Mechanical Systems

The book aims to highlight the potential of Deep Learning (DL)-based methods in Intelligent Fault Diagnosis (IFD), along with their benefits and contributions.

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yan, Ruqiang, Zhao, Zhibin
Format: Buch
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume 1
creator Yan, Ruqiang
Zhao, Zhibin
description The book aims to highlight the potential of Deep Learning (DL)-based methods in Intelligent Fault Diagnosis (IFD), along with their benefits and contributions.
doi_str_mv 10.1201/9781003474463
format Book
fullrecord <record><control><sourceid>proquest_askew</sourceid><recordid>TN_cdi_safari_books_v2_9781040026618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC31319512</sourcerecordid><originalsourceid>FETCH-LOGICAL-a11122-3029309f0a62758112d9d8cc3ed541b789fb1f44d7c8fb67255b9ba2b8c9e9f03</originalsourceid><addsrcrecordid>eNpVkT1PwzAQho0QCCgd2TMwwBDw2c6HR2hTqFTKAGK1nMRuQ924xGmr_ntMwgC3nHT3vHf2ewhdAb4DguGeJylgTFnCWEyP0AVghjGJY6DHaNg1KUmihLDk1DcZpQRHDKdnaOjcJ_ZK4gPDOZqPldoEc7VtpPGp3dtm5cKslrlRZTCtW2VMtVB1G0zk1rTBuJKL2rrKBVYHL6pYyroqvPTt4Fq1dpfoREvj1PA3D9DHJHsfPYez16fp6GEWSgAgJKSYcIq5xjL270x9reRlWhRUlRGDPEm5zkEzViZFqvM4IVGU81ySPC248jI6QLf9YOlWau-W1rRO7IzKrV050TnQORLxyLPXPeuklk0lemZH_mAxpB676bFNY7-2yrWim1b4z3tzRPY4okCBR0A8mvVoVWvbrKV3zZSilQdjG93IuqhcvwSw-LmX-HcvsVONq2xN6DdG_oTV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype><pqid>EBC31319512</pqid></control><display><type>book</type><title>Deep Neural Networks-Enabled Intelligent Fault Diagnosis of Mechanical Systems</title><source>O'Reilly Online Learning: Academic/Public Library Edition</source><creator>Yan, Ruqiang ; Zhao, Zhibin</creator><creatorcontrib>Yan, Ruqiang ; Zhao, Zhibin</creatorcontrib><description>The book aims to highlight the potential of Deep Learning (DL)-based methods in Intelligent Fault Diagnosis (IFD), along with their benefits and contributions.</description><edition>1</edition><identifier>ISBN: 9781032757247</identifier><identifier>ISBN: 9781032752372</identifier><identifier>ISBN: 1032752378</identifier><identifier>ISBN: 1032757248</identifier><identifier>ISBN: 1040026613</identifier><identifier>ISBN: 9781040026618</identifier><identifier>EISBN: 1040026613</identifier><identifier>EISBN: 9781040026618</identifier><identifier>EISBN: 1040026591</identifier><identifier>EISBN: 1003474462</identifier><identifier>EISBN: 9781040026595</identifier><identifier>EISBN: 9781003474463</identifier><identifier>DOI: 10.1201/9781003474463</identifier><identifier>OCLC: 1433205408</identifier><language>eng</language><publisher>Boca Raton: CRC Press</publisher><subject>Fault location (Engineering) ; Neural networks (Computer science)</subject><creationdate>2024</creationdate><tpages>217</tpages><format>217</format><rights>2024 Ruqiang Yan and Zhibin Zhao</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4180-7137 ; 0000-0002-1250-4084</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>306,780,784,786,24760,27923</link.rule.ids></links><search><creatorcontrib>Yan, Ruqiang</creatorcontrib><creatorcontrib>Zhao, Zhibin</creatorcontrib><title>Deep Neural Networks-Enabled Intelligent Fault Diagnosis of Mechanical Systems</title><description>The book aims to highlight the potential of Deep Learning (DL)-based methods in Intelligent Fault Diagnosis (IFD), along with their benefits and contributions.</description><subject>Fault location (Engineering)</subject><subject>Neural networks (Computer science)</subject><isbn>9781032757247</isbn><isbn>9781032752372</isbn><isbn>1032752378</isbn><isbn>1032757248</isbn><isbn>1040026613</isbn><isbn>9781040026618</isbn><isbn>1040026613</isbn><isbn>9781040026618</isbn><isbn>1040026591</isbn><isbn>1003474462</isbn><isbn>9781040026595</isbn><isbn>9781003474463</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2024</creationdate><recordtype>book</recordtype><sourceid>OODEK</sourceid><recordid>eNpVkT1PwzAQho0QCCgd2TMwwBDw2c6HR2hTqFTKAGK1nMRuQ924xGmr_ntMwgC3nHT3vHf2ewhdAb4DguGeJylgTFnCWEyP0AVghjGJY6DHaNg1KUmihLDk1DcZpQRHDKdnaOjcJ_ZK4gPDOZqPldoEc7VtpPGp3dtm5cKslrlRZTCtW2VMtVB1G0zk1rTBuJKL2rrKBVYHL6pYyroqvPTt4Fq1dpfoREvj1PA3D9DHJHsfPYez16fp6GEWSgAgJKSYcIq5xjL270x9reRlWhRUlRGDPEm5zkEzViZFqvM4IVGU81ySPC248jI6QLf9YOlWau-W1rRO7IzKrV050TnQORLxyLPXPeuklk0lemZH_mAxpB676bFNY7-2yrWim1b4z3tzRPY4okCBR0A8mvVoVWvbrKV3zZSilQdjG93IuqhcvwSw-LmX-HcvsVONq2xN6DdG_oTV</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Yan, Ruqiang</creator><creator>Zhao, Zhibin</creator><general>CRC Press</general><general>Taylor &amp; Francis Group</general><scope>OHILO</scope><scope>OODEK</scope><orcidid>https://orcid.org/0000-0003-4180-7137</orcidid><orcidid>https://orcid.org/0000-0002-1250-4084</orcidid></search><sort><creationdate>2024</creationdate><title>Deep Neural Networks-Enabled Intelligent Fault Diagnosis of Mechanical Systems</title><author>Yan, Ruqiang ; Zhao, Zhibin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a11122-3029309f0a62758112d9d8cc3ed541b789fb1f44d7c8fb67255b9ba2b8c9e9f03</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Fault location (Engineering)</topic><topic>Neural networks (Computer science)</topic><toplevel>online_resources</toplevel><creatorcontrib>Yan, Ruqiang</creatorcontrib><creatorcontrib>Zhao, Zhibin</creatorcontrib><collection>O'Reilly Online Learning: Corporate Edition</collection><collection>O'Reilly Online Learning: Academic/Public Library Edition</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Ruqiang</au><au>Zhao, Zhibin</au><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Deep Neural Networks-Enabled Intelligent Fault Diagnosis of Mechanical Systems</btitle><date>2024</date><risdate>2024</risdate><volume>1</volume><isbn>9781032757247</isbn><isbn>9781032752372</isbn><isbn>1032752378</isbn><isbn>1032757248</isbn><isbn>1040026613</isbn><isbn>9781040026618</isbn><eisbn>1040026613</eisbn><eisbn>9781040026618</eisbn><eisbn>1040026591</eisbn><eisbn>1003474462</eisbn><eisbn>9781040026595</eisbn><eisbn>9781003474463</eisbn><abstract>The book aims to highlight the potential of Deep Learning (DL)-based methods in Intelligent Fault Diagnosis (IFD), along with their benefits and contributions.</abstract><cop>Boca Raton</cop><pub>CRC Press</pub><doi>10.1201/9781003474463</doi><oclcid>1433205408</oclcid><tpages>217</tpages><edition>1</edition><orcidid>https://orcid.org/0000-0003-4180-7137</orcidid><orcidid>https://orcid.org/0000-0002-1250-4084</orcidid></addata></record>
fulltext fulltext
identifier ISBN: 9781032757247
ispartof
issn
language eng
recordid cdi_safari_books_v2_9781040026618
source O'Reilly Online Learning: Academic/Public Library Edition
subjects Fault location (Engineering)
Neural networks (Computer science)
title Deep Neural Networks-Enabled Intelligent Fault Diagnosis of Mechanical Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T18%3A34%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_askew&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Deep%20Neural%20Networks-Enabled%20Intelligent%20Fault%20Diagnosis%20of%20Mechanical%20Systems&rft.au=Yan,%20Ruqiang&rft.date=2024&rft.volume=1&rft.isbn=9781032757247&rft.isbn_list=9781032752372&rft.isbn_list=1032752378&rft.isbn_list=1032757248&rft.isbn_list=1040026613&rft_id=info:doi/10.1201/9781003474463&rft_dat=%3Cproquest_askew%3EEBC31319512%3C/proquest_askew%3E%3Curl%3E%3C/url%3E&rft.eisbn=1040026613&rft.eisbn_list=9781040026618&rft.eisbn_list=1040026591&rft.eisbn_list=1003474462&rft.eisbn_list=9781040026595&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC31319512&rft_id=info:pmid/&rfr_iscdi=true