Multifunctional MXene composite aerogels modified hyperbranched gels

In the modern battlefield, the use of multi-spectral detection techniques that combine the use of infrared and radar bands is prevalent, making the survivability of high-value targets poor. Consequently, there is an urgent need to develop materials that can withstand multi-spectral detection. Here,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2024-09, Vol.12 (37), p.25545-25556
Hauptverfasser: Wang, Tairan, Zhang, Hengzhi, Tang, Shengwei, Jia, Chunyang
Format: Artikel
Sprache:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25556
container_issue 37
container_start_page 25545
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 12
creator Wang, Tairan
Zhang, Hengzhi
Tang, Shengwei
Jia, Chunyang
description In the modern battlefield, the use of multi-spectral detection techniques that combine the use of infrared and radar bands is prevalent, making the survivability of high-value targets poor. Consequently, there is an urgent need to develop materials that can withstand multi-spectral detection. Here, a multifunctional aerogel composite of hyperbranched gel (HPY) and MXene (Ti 3 C 2 T x ) is proposed to simultaneously resist multi-spectral detection. The surface of the aerogel has aligned porous walls, which gives the aerogel excellent thermal insulation, with a surface temperature of only 45.2 °C after being kept on a hot platform at 200 °C for 420 min. Most importantly, the aerogel exhibits a double absorption peak with a minimum reflection loss of −55.05 dB at 4.26 GHz and −49.43 dB at 16.68 GHz. Most notably, the widest effective absorption bandwidth (EAB) reaches 8.1 GHz with a matched thickness of only 1.7 mm. The incorporation of HPY alters the internal pore size of the aerogel, thereby developing an internal thermal insulation structure. Furthermore, the parallel hollow walls on the surface of the aerogel permit electromagnetic waves to enter the interior, while the composite structure endows the aerogel with multiple electromagnetic wave loss mechanisms. The surface of hyperbranched gel/MXene composite aerogel has parallel walls, and the special morphology gives the aerogel excellent thermal insulation and electromagnetic wave absorption properties.
doi_str_mv 10.1039/d4ta03888f
format Article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_d4ta03888f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d4ta03888f</sourcerecordid><originalsourceid>FETCH-rsc_primary_d4ta03888f3</originalsourceid><addsrcrecordid>eNqFjr0OgjAYRRujiURZ3E36AmgRxHb2Jy5uDm6klq9SU1rSloG3FxOjo3e59-QsF6FFSlYpydi6ygMnGaVUjlC0IVuS7HJWjL-b0imKvX-SIZSQgrEIHS6dDkp2RgRlDdf4cgMDWNimtV4FwBycfYD2uLGVkgoqXPctuLvjRtQDvd0cTSTXHuJPz9DydLzuz4nzomydarjry9-77J9_AcMiPhs</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multifunctional MXene composite aerogels modified hyperbranched gels</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Wang, Tairan ; Zhang, Hengzhi ; Tang, Shengwei ; Jia, Chunyang</creator><creatorcontrib>Wang, Tairan ; Zhang, Hengzhi ; Tang, Shengwei ; Jia, Chunyang</creatorcontrib><description>In the modern battlefield, the use of multi-spectral detection techniques that combine the use of infrared and radar bands is prevalent, making the survivability of high-value targets poor. Consequently, there is an urgent need to develop materials that can withstand multi-spectral detection. Here, a multifunctional aerogel composite of hyperbranched gel (HPY) and MXene (Ti 3 C 2 T x ) is proposed to simultaneously resist multi-spectral detection. The surface of the aerogel has aligned porous walls, which gives the aerogel excellent thermal insulation, with a surface temperature of only 45.2 °C after being kept on a hot platform at 200 °C for 420 min. Most importantly, the aerogel exhibits a double absorption peak with a minimum reflection loss of −55.05 dB at 4.26 GHz and −49.43 dB at 16.68 GHz. Most notably, the widest effective absorption bandwidth (EAB) reaches 8.1 GHz with a matched thickness of only 1.7 mm. The incorporation of HPY alters the internal pore size of the aerogel, thereby developing an internal thermal insulation structure. Furthermore, the parallel hollow walls on the surface of the aerogel permit electromagnetic waves to enter the interior, while the composite structure endows the aerogel with multiple electromagnetic wave loss mechanisms. The surface of hyperbranched gel/MXene composite aerogel has parallel walls, and the special morphology gives the aerogel excellent thermal insulation and electromagnetic wave absorption properties.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d4ta03888f</identifier><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2024-09, Vol.12 (37), p.25545-25556</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wang, Tairan</creatorcontrib><creatorcontrib>Zhang, Hengzhi</creatorcontrib><creatorcontrib>Tang, Shengwei</creatorcontrib><creatorcontrib>Jia, Chunyang</creatorcontrib><title>Multifunctional MXene composite aerogels modified hyperbranched gels</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>In the modern battlefield, the use of multi-spectral detection techniques that combine the use of infrared and radar bands is prevalent, making the survivability of high-value targets poor. Consequently, there is an urgent need to develop materials that can withstand multi-spectral detection. Here, a multifunctional aerogel composite of hyperbranched gel (HPY) and MXene (Ti 3 C 2 T x ) is proposed to simultaneously resist multi-spectral detection. The surface of the aerogel has aligned porous walls, which gives the aerogel excellent thermal insulation, with a surface temperature of only 45.2 °C after being kept on a hot platform at 200 °C for 420 min. Most importantly, the aerogel exhibits a double absorption peak with a minimum reflection loss of −55.05 dB at 4.26 GHz and −49.43 dB at 16.68 GHz. Most notably, the widest effective absorption bandwidth (EAB) reaches 8.1 GHz with a matched thickness of only 1.7 mm. The incorporation of HPY alters the internal pore size of the aerogel, thereby developing an internal thermal insulation structure. Furthermore, the parallel hollow walls on the surface of the aerogel permit electromagnetic waves to enter the interior, while the composite structure endows the aerogel with multiple electromagnetic wave loss mechanisms. The surface of hyperbranched gel/MXene composite aerogel has parallel walls, and the special morphology gives the aerogel excellent thermal insulation and electromagnetic wave absorption properties.</description><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFjr0OgjAYRRujiURZ3E36AmgRxHb2Jy5uDm6klq9SU1rSloG3FxOjo3e59-QsF6FFSlYpydi6ygMnGaVUjlC0IVuS7HJWjL-b0imKvX-SIZSQgrEIHS6dDkp2RgRlDdf4cgMDWNimtV4FwBycfYD2uLGVkgoqXPctuLvjRtQDvd0cTSTXHuJPz9DydLzuz4nzomydarjry9-77J9_AcMiPhs</recordid><startdate>20240924</startdate><enddate>20240924</enddate><creator>Wang, Tairan</creator><creator>Zhang, Hengzhi</creator><creator>Tang, Shengwei</creator><creator>Jia, Chunyang</creator><scope/></search><sort><creationdate>20240924</creationdate><title>Multifunctional MXene composite aerogels modified hyperbranched gels</title><author>Wang, Tairan ; Zhang, Hengzhi ; Tang, Shengwei ; Jia, Chunyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_d4ta03888f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Tairan</creatorcontrib><creatorcontrib>Zhang, Hengzhi</creatorcontrib><creatorcontrib>Tang, Shengwei</creatorcontrib><creatorcontrib>Jia, Chunyang</creatorcontrib><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Tairan</au><au>Zhang, Hengzhi</au><au>Tang, Shengwei</au><au>Jia, Chunyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multifunctional MXene composite aerogels modified hyperbranched gels</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2024-09-24</date><risdate>2024</risdate><volume>12</volume><issue>37</issue><spage>25545</spage><epage>25556</epage><pages>25545-25556</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>In the modern battlefield, the use of multi-spectral detection techniques that combine the use of infrared and radar bands is prevalent, making the survivability of high-value targets poor. Consequently, there is an urgent need to develop materials that can withstand multi-spectral detection. Here, a multifunctional aerogel composite of hyperbranched gel (HPY) and MXene (Ti 3 C 2 T x ) is proposed to simultaneously resist multi-spectral detection. The surface of the aerogel has aligned porous walls, which gives the aerogel excellent thermal insulation, with a surface temperature of only 45.2 °C after being kept on a hot platform at 200 °C for 420 min. Most importantly, the aerogel exhibits a double absorption peak with a minimum reflection loss of −55.05 dB at 4.26 GHz and −49.43 dB at 16.68 GHz. Most notably, the widest effective absorption bandwidth (EAB) reaches 8.1 GHz with a matched thickness of only 1.7 mm. The incorporation of HPY alters the internal pore size of the aerogel, thereby developing an internal thermal insulation structure. Furthermore, the parallel hollow walls on the surface of the aerogel permit electromagnetic waves to enter the interior, while the composite structure endows the aerogel with multiple electromagnetic wave loss mechanisms. The surface of hyperbranched gel/MXene composite aerogel has parallel walls, and the special morphology gives the aerogel excellent thermal insulation and electromagnetic wave absorption properties.</abstract><doi>10.1039/d4ta03888f</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2024-09, Vol.12 (37), p.25545-25556
issn 2050-7488
2050-7496
language
recordid cdi_rsc_primary_d4ta03888f
source Royal Society Of Chemistry Journals 2008-
title Multifunctional MXene composite aerogels modified hyperbranched gels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A12%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multifunctional%20MXene%20composite%20aerogels%20modified%20hyperbranched%20gels&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Wang,%20Tairan&rft.date=2024-09-24&rft.volume=12&rft.issue=37&rft.spage=25545&rft.epage=25556&rft.pages=25545-25556&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d4ta03888f&rft_dat=%3Crsc%3Ed4ta03888f%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true