Understanding the evolution of ternary alloyed nanoparticles during reversible exsolution from double perovskite oxides
Multicomponent nanoparticle exsolution has emerged as a promising process for obtaining highly active catalysts supported on perovskite oxides. For instance, FeCoNi alloys can be exsolved from Sr 2 FeCo 0.2 Ni 0.2 Mn 0.1 Mo 0.5 O 6− δ , boosting the electrocatalytic properties of these electrodes. H...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2024-08, Vol.12 (34), p.2269-22626 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 22626 |
---|---|
container_issue | 34 |
container_start_page | 2269 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 12 |
creator | López-García, Andrés Carrillo, Alfonso J Jiménez, Catalina Elena Anzorena, Rosario Suarez Garcia-Diez, Raul Pérez-Dieste, Virginia Villar-Garcia, Ignacio J Hungría, Ana B Bär, Marcus Serra, José M |
description | Multicomponent nanoparticle exsolution has emerged as a promising process for obtaining highly active catalysts supported on perovskite oxides. For instance, FeCoNi alloys can be exsolved from Sr
2
FeCo
0.2
Ni
0.2
Mn
0.1
Mo
0.5
O
6−
δ
, boosting the electrocatalytic properties of these electrodes. However, due to differences in cation diffusion properties, the composition of the nanoparticles is uneven and strongly affected by process conditions such as temperature. An additional key feature of exsolution is its reversibility, which could help in catalyst regeneration if poisoned. Nevertheless, there is little knowledge on the reversibility mechanisms of multicomponent exsolved alloys. For that purpose, a combination of synchrotron-based
in situ
X-ray Diffraction (XRD) and Near-Ambient Pressure X-ray Photoelectron Spectroscopy (NAP-XPS) was employed in this work to uncover these missing aspects of multicomponent alloyed exsolution. These techniques allowed determination of the crystallographic and surface-related phenomena occurring during reversible exsolution both to the nanoparticles and the perovskite oxide support. This enabled the identification of the exsolution onset temperature and the range at which the double perovskite to Ruddlesden-Popper transition occurred, a process that has notable implications for the electrocatalytic performance. Finally, in combination with microscopy analyses, it was possible to reveal the morphological and compositional changes that the exsolved nanoparticles experienced upon reduction-oxidation cycles. This resulted in a re-arrangement of the surface species and a variation in the composition (Fe enrichment) of the regenerated ternary alloyed exsolved nanoparticles. These results indicate that reversible exsolution might alter the catalytic properties of the exsolved nanoparticles, with profound implications in the performance of (electro)catalytic processes.
This work unveils the mechanism of FeCoNi alloy reversible exsolution from double perovskites
via in situ
synchrotron-based NAP-XPS and time-resolved XRD. |
doi_str_mv | 10.1039/d4ta03146f |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d4ta03146f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3097461318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c206t-aef867dc263ba9cd4906f5c5ee3f24ef37f18a3215edd2345a5db0f18726db83</originalsourceid><addsrcrecordid>eNpFkMFLwzAUxoMoOOYu3oWAN6GaNGnaHsd0Kgy81HNJmxfN7JqapHP7722dznd5j4_f9-D7ELqk5JYSlt8pHiRhlAt9giYxSUiU8lycHu8sO0cz79dkmIwQkecT9PXaKnA-yFaZ9g2Hd8CwtU0fjG2x1TiAa6XbY9k0dg8Kt7K1nXTB1A14rHo3uhxshx-magbzzv-5tbMbrGw_yh04u_UfJgC2O6PAX6AzLRsPs989RcXyoVg8RauXx-fFfBXVMREhkqAzkao6FqySea14ToRO6gSA6ZiDZqmmmWQxTUCpmPFEJqoig5bGQlUZm6Lrw9vO2c8efCjXth8SNb5kJE-5oIyO1M2Bqp313oEuO2c2Q-ySknKstrznxfyn2uUAXx1g5-sj9189-wbg-nlq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3097461318</pqid></control><display><type>article</type><title>Understanding the evolution of ternary alloyed nanoparticles during reversible exsolution from double perovskite oxides</title><source>Royal Society Of Chemistry Journals</source><creator>López-García, Andrés ; Carrillo, Alfonso J ; Jiménez, Catalina Elena ; Anzorena, Rosario Suarez ; Garcia-Diez, Raul ; Pérez-Dieste, Virginia ; Villar-Garcia, Ignacio J ; Hungría, Ana B ; Bär, Marcus ; Serra, José M</creator><creatorcontrib>López-García, Andrés ; Carrillo, Alfonso J ; Jiménez, Catalina Elena ; Anzorena, Rosario Suarez ; Garcia-Diez, Raul ; Pérez-Dieste, Virginia ; Villar-Garcia, Ignacio J ; Hungría, Ana B ; Bär, Marcus ; Serra, José M</creatorcontrib><description>Multicomponent nanoparticle exsolution has emerged as a promising process for obtaining highly active catalysts supported on perovskite oxides. For instance, FeCoNi alloys can be exsolved from Sr
2
FeCo
0.2
Ni
0.2
Mn
0.1
Mo
0.5
O
6−
δ
, boosting the electrocatalytic properties of these electrodes. However, due to differences in cation diffusion properties, the composition of the nanoparticles is uneven and strongly affected by process conditions such as temperature. An additional key feature of exsolution is its reversibility, which could help in catalyst regeneration if poisoned. Nevertheless, there is little knowledge on the reversibility mechanisms of multicomponent exsolved alloys. For that purpose, a combination of synchrotron-based
in situ
X-ray Diffraction (XRD) and Near-Ambient Pressure X-ray Photoelectron Spectroscopy (NAP-XPS) was employed in this work to uncover these missing aspects of multicomponent alloyed exsolution. These techniques allowed determination of the crystallographic and surface-related phenomena occurring during reversible exsolution both to the nanoparticles and the perovskite oxide support. This enabled the identification of the exsolution onset temperature and the range at which the double perovskite to Ruddlesden-Popper transition occurred, a process that has notable implications for the electrocatalytic performance. Finally, in combination with microscopy analyses, it was possible to reveal the morphological and compositional changes that the exsolved nanoparticles experienced upon reduction-oxidation cycles. This resulted in a re-arrangement of the surface species and a variation in the composition (Fe enrichment) of the regenerated ternary alloyed exsolved nanoparticles. These results indicate that reversible exsolution might alter the catalytic properties of the exsolved nanoparticles, with profound implications in the performance of (electro)catalytic processes.
This work unveils the mechanism of FeCoNi alloy reversible exsolution from double perovskites
via in situ
synchrotron-based NAP-XPS and time-resolved XRD.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d4ta03146f</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Alloys ; Catalysts ; Composition ; Crystallography ; Iron ; Nanoalloys ; Nanoparticles ; Oxidation ; Perovskites ; Photoelectron spectroscopy ; Photoelectrons ; Pressure ; X ray photoelectron spectroscopy ; X-ray diffraction</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2024-08, Vol.12 (34), p.2269-22626</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c206t-aef867dc263ba9cd4906f5c5ee3f24ef37f18a3215edd2345a5db0f18726db83</cites><orcidid>0000-0002-4622-6967 ; 0000-0002-9401-7342 ; 0000-0001-8581-0691 ; 0000-0002-1515-1106 ; 0000-0002-5576-9277 ; 0009-0000-9374-1083 ; 0000-0002-5657-5212 ; 0000-0001-9719-606X ; 0000-0002-8107-4399 ; 0000-0003-2813-3211</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>López-García, Andrés</creatorcontrib><creatorcontrib>Carrillo, Alfonso J</creatorcontrib><creatorcontrib>Jiménez, Catalina Elena</creatorcontrib><creatorcontrib>Anzorena, Rosario Suarez</creatorcontrib><creatorcontrib>Garcia-Diez, Raul</creatorcontrib><creatorcontrib>Pérez-Dieste, Virginia</creatorcontrib><creatorcontrib>Villar-Garcia, Ignacio J</creatorcontrib><creatorcontrib>Hungría, Ana B</creatorcontrib><creatorcontrib>Bär, Marcus</creatorcontrib><creatorcontrib>Serra, José M</creatorcontrib><title>Understanding the evolution of ternary alloyed nanoparticles during reversible exsolution from double perovskite oxides</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Multicomponent nanoparticle exsolution has emerged as a promising process for obtaining highly active catalysts supported on perovskite oxides. For instance, FeCoNi alloys can be exsolved from Sr
2
FeCo
0.2
Ni
0.2
Mn
0.1
Mo
0.5
O
6−
δ
, boosting the electrocatalytic properties of these electrodes. However, due to differences in cation diffusion properties, the composition of the nanoparticles is uneven and strongly affected by process conditions such as temperature. An additional key feature of exsolution is its reversibility, which could help in catalyst regeneration if poisoned. Nevertheless, there is little knowledge on the reversibility mechanisms of multicomponent exsolved alloys. For that purpose, a combination of synchrotron-based
in situ
X-ray Diffraction (XRD) and Near-Ambient Pressure X-ray Photoelectron Spectroscopy (NAP-XPS) was employed in this work to uncover these missing aspects of multicomponent alloyed exsolution. These techniques allowed determination of the crystallographic and surface-related phenomena occurring during reversible exsolution both to the nanoparticles and the perovskite oxide support. This enabled the identification of the exsolution onset temperature and the range at which the double perovskite to Ruddlesden-Popper transition occurred, a process that has notable implications for the electrocatalytic performance. Finally, in combination with microscopy analyses, it was possible to reveal the morphological and compositional changes that the exsolved nanoparticles experienced upon reduction-oxidation cycles. This resulted in a re-arrangement of the surface species and a variation in the composition (Fe enrichment) of the regenerated ternary alloyed exsolved nanoparticles. These results indicate that reversible exsolution might alter the catalytic properties of the exsolved nanoparticles, with profound implications in the performance of (electro)catalytic processes.
This work unveils the mechanism of FeCoNi alloy reversible exsolution from double perovskites
via in situ
synchrotron-based NAP-XPS and time-resolved XRD.</description><subject>Alloys</subject><subject>Catalysts</subject><subject>Composition</subject><subject>Crystallography</subject><subject>Iron</subject><subject>Nanoalloys</subject><subject>Nanoparticles</subject><subject>Oxidation</subject><subject>Perovskites</subject><subject>Photoelectron spectroscopy</subject><subject>Photoelectrons</subject><subject>Pressure</subject><subject>X ray photoelectron spectroscopy</subject><subject>X-ray diffraction</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkMFLwzAUxoMoOOYu3oWAN6GaNGnaHsd0Kgy81HNJmxfN7JqapHP7722dznd5j4_f9-D7ELqk5JYSlt8pHiRhlAt9giYxSUiU8lycHu8sO0cz79dkmIwQkecT9PXaKnA-yFaZ9g2Hd8CwtU0fjG2x1TiAa6XbY9k0dg8Kt7K1nXTB1A14rHo3uhxshx-magbzzv-5tbMbrGw_yh04u_UfJgC2O6PAX6AzLRsPs989RcXyoVg8RauXx-fFfBXVMREhkqAzkao6FqySea14ToRO6gSA6ZiDZqmmmWQxTUCpmPFEJqoig5bGQlUZm6Lrw9vO2c8efCjXth8SNb5kJE-5oIyO1M2Bqp313oEuO2c2Q-ySknKstrznxfyn2uUAXx1g5-sj9189-wbg-nlq</recordid><startdate>20240827</startdate><enddate>20240827</enddate><creator>López-García, Andrés</creator><creator>Carrillo, Alfonso J</creator><creator>Jiménez, Catalina Elena</creator><creator>Anzorena, Rosario Suarez</creator><creator>Garcia-Diez, Raul</creator><creator>Pérez-Dieste, Virginia</creator><creator>Villar-Garcia, Ignacio J</creator><creator>Hungría, Ana B</creator><creator>Bär, Marcus</creator><creator>Serra, José M</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-4622-6967</orcidid><orcidid>https://orcid.org/0000-0002-9401-7342</orcidid><orcidid>https://orcid.org/0000-0001-8581-0691</orcidid><orcidid>https://orcid.org/0000-0002-1515-1106</orcidid><orcidid>https://orcid.org/0000-0002-5576-9277</orcidid><orcidid>https://orcid.org/0009-0000-9374-1083</orcidid><orcidid>https://orcid.org/0000-0002-5657-5212</orcidid><orcidid>https://orcid.org/0000-0001-9719-606X</orcidid><orcidid>https://orcid.org/0000-0002-8107-4399</orcidid><orcidid>https://orcid.org/0000-0003-2813-3211</orcidid></search><sort><creationdate>20240827</creationdate><title>Understanding the evolution of ternary alloyed nanoparticles during reversible exsolution from double perovskite oxides</title><author>López-García, Andrés ; Carrillo, Alfonso J ; Jiménez, Catalina Elena ; Anzorena, Rosario Suarez ; Garcia-Diez, Raul ; Pérez-Dieste, Virginia ; Villar-Garcia, Ignacio J ; Hungría, Ana B ; Bär, Marcus ; Serra, José M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c206t-aef867dc263ba9cd4906f5c5ee3f24ef37f18a3215edd2345a5db0f18726db83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alloys</topic><topic>Catalysts</topic><topic>Composition</topic><topic>Crystallography</topic><topic>Iron</topic><topic>Nanoalloys</topic><topic>Nanoparticles</topic><topic>Oxidation</topic><topic>Perovskites</topic><topic>Photoelectron spectroscopy</topic><topic>Photoelectrons</topic><topic>Pressure</topic><topic>X ray photoelectron spectroscopy</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>López-García, Andrés</creatorcontrib><creatorcontrib>Carrillo, Alfonso J</creatorcontrib><creatorcontrib>Jiménez, Catalina Elena</creatorcontrib><creatorcontrib>Anzorena, Rosario Suarez</creatorcontrib><creatorcontrib>Garcia-Diez, Raul</creatorcontrib><creatorcontrib>Pérez-Dieste, Virginia</creatorcontrib><creatorcontrib>Villar-Garcia, Ignacio J</creatorcontrib><creatorcontrib>Hungría, Ana B</creatorcontrib><creatorcontrib>Bär, Marcus</creatorcontrib><creatorcontrib>Serra, José M</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>López-García, Andrés</au><au>Carrillo, Alfonso J</au><au>Jiménez, Catalina Elena</au><au>Anzorena, Rosario Suarez</au><au>Garcia-Diez, Raul</au><au>Pérez-Dieste, Virginia</au><au>Villar-Garcia, Ignacio J</au><au>Hungría, Ana B</au><au>Bär, Marcus</au><au>Serra, José M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding the evolution of ternary alloyed nanoparticles during reversible exsolution from double perovskite oxides</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2024-08-27</date><risdate>2024</risdate><volume>12</volume><issue>34</issue><spage>2269</spage><epage>22626</epage><pages>2269-22626</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Multicomponent nanoparticle exsolution has emerged as a promising process for obtaining highly active catalysts supported on perovskite oxides. For instance, FeCoNi alloys can be exsolved from Sr
2
FeCo
0.2
Ni
0.2
Mn
0.1
Mo
0.5
O
6−
δ
, boosting the electrocatalytic properties of these electrodes. However, due to differences in cation diffusion properties, the composition of the nanoparticles is uneven and strongly affected by process conditions such as temperature. An additional key feature of exsolution is its reversibility, which could help in catalyst regeneration if poisoned. Nevertheless, there is little knowledge on the reversibility mechanisms of multicomponent exsolved alloys. For that purpose, a combination of synchrotron-based
in situ
X-ray Diffraction (XRD) and Near-Ambient Pressure X-ray Photoelectron Spectroscopy (NAP-XPS) was employed in this work to uncover these missing aspects of multicomponent alloyed exsolution. These techniques allowed determination of the crystallographic and surface-related phenomena occurring during reversible exsolution both to the nanoparticles and the perovskite oxide support. This enabled the identification of the exsolution onset temperature and the range at which the double perovskite to Ruddlesden-Popper transition occurred, a process that has notable implications for the electrocatalytic performance. Finally, in combination with microscopy analyses, it was possible to reveal the morphological and compositional changes that the exsolved nanoparticles experienced upon reduction-oxidation cycles. This resulted in a re-arrangement of the surface species and a variation in the composition (Fe enrichment) of the regenerated ternary alloyed exsolved nanoparticles. These results indicate that reversible exsolution might alter the catalytic properties of the exsolved nanoparticles, with profound implications in the performance of (electro)catalytic processes.
This work unveils the mechanism of FeCoNi alloy reversible exsolution from double perovskites
via in situ
synchrotron-based NAP-XPS and time-resolved XRD.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4ta03146f</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-4622-6967</orcidid><orcidid>https://orcid.org/0000-0002-9401-7342</orcidid><orcidid>https://orcid.org/0000-0001-8581-0691</orcidid><orcidid>https://orcid.org/0000-0002-1515-1106</orcidid><orcidid>https://orcid.org/0000-0002-5576-9277</orcidid><orcidid>https://orcid.org/0009-0000-9374-1083</orcidid><orcidid>https://orcid.org/0000-0002-5657-5212</orcidid><orcidid>https://orcid.org/0000-0001-9719-606X</orcidid><orcidid>https://orcid.org/0000-0002-8107-4399</orcidid><orcidid>https://orcid.org/0000-0003-2813-3211</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2024-08, Vol.12 (34), p.2269-22626 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_rsc_primary_d4ta03146f |
source | Royal Society Of Chemistry Journals |
subjects | Alloys Catalysts Composition Crystallography Iron Nanoalloys Nanoparticles Oxidation Perovskites Photoelectron spectroscopy Photoelectrons Pressure X ray photoelectron spectroscopy X-ray diffraction |
title | Understanding the evolution of ternary alloyed nanoparticles during reversible exsolution from double perovskite oxides |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T16%3A01%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20the%20evolution%20of%20ternary%20alloyed%20nanoparticles%20during%20reversible%20exsolution%20from%20double%20perovskite%20oxides&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=L%C3%B3pez-Garc%C3%ADa,%20Andr%C3%A9s&rft.date=2024-08-27&rft.volume=12&rft.issue=34&rft.spage=2269&rft.epage=22626&rft.pages=2269-22626&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d4ta03146f&rft_dat=%3Cproquest_rsc_p%3E3097461318%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3097461318&rft_id=info:pmid/&rfr_iscdi=true |