Unveiling the structural integrity of tunnel-type NaMnO cathode for sodium ion battery
Tunnel-type Na 0.44 MnO 2 (tt-NMO) is a promising cathode for sodium ion battery having excellent structural stability, diffusion kinetics, and low cost. However, this cathode is reported to suffer from low initial charge capacity ( e.g. , ≤60 mA h g −1 ) due to the limited accessibility of sodium i...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2024-09, Vol.12 (37), p.2519-25116 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 25116 |
---|---|
container_issue | 37 |
container_start_page | 2519 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 12 |
creator | Chakrabarty, Sankalpita Dar, Javeed Ahmad Joshi, Akanksha Paperni, Arad Taragin, Sarah Maddegalla, Ananya Sai Gautam, Gopalakrishnan Mukherjee, Ayan Noked, Malachi |
description | Tunnel-type Na
0.44
MnO
2
(tt-NMO) is a promising cathode for sodium ion battery having excellent structural stability, diffusion kinetics, and low cost. However, this cathode is reported to suffer from low initial charge capacity (
e.g.
, ≤60 mA h g
−1
) due to the limited accessibility of sodium ion extraction (0.22-0.24 Na
+
per formula unit) from the structure, which hinders the practical viability of this material in a full battery cell. In this study, we report a tailored tt-NMO structure, synthesized using a two-step facile and scalable process, with >95% yield. Our tt-NMO demonstrated a 1st charge capacity of 110 mA h g
−1
, followed by a discharge capacity of 115 mA h g
−1
within the potential window of 4-1.7 V
versus
Na/Na
+
. The long-term cycling performance at 0.5C rate and 1C rate (1C = 120 mA h g
−1
) shows excellent structural integrity for over 400 cycles with >75% capacity retention. We show experimentally and support it with DFT (density functional theory) calculations that the unique microstructure of this tt-NMO, with modulated Na-O bond length and Na-O-Na bond angle, results in open channels along the
c
-axis in the
ab
plane, providing a wide pathway for ion diffusion. The Na
+
migration barriers (
E
m
) along the two pathways of the
c
-tunnel are calculated to be within the threshold limit of Na
+
migration energy barrier, which renders more sites electrochemically active, enabling the high 1st charge capacity. This novel study opens possibilities to use this unique tt-NMO as an efficient SIB (sodium ion battery) cathode by harnessing the modified structure.
Tunnel-type Na
0.44
MnO
2
(tt-NMO) is a promising cathode for sodium ion battery having excellent structural stability, diffusion kinetics, and low cost. |
doi_str_mv | 10.1039/d4ta03034f |
format | Article |
fullrecord | <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_d4ta03034f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d4ta03034f</sourcerecordid><originalsourceid>FETCH-rsc_primary_d4ta03034f3</originalsourceid><addsrcrecordid>eNqFjrEOgjAURRujiURZ3E3eD6APQYTZaFzURV1JhQI10JL2YcLf62B09C7nJGe5jM18XPgYJMs8JI4BBmExYM4K1-htwiQafj2Ox8y19oHvxYhRkjjsdlVPIWupSqBKgCXTZdQZXoNUJEojqQddAHVKidqjvhVw4kd1hoxTpXMBhTZgdS67BqRWcOdEwvRTNip4bYX74YTN97vL9uAZm6WtkQ03ffr7G_zrL49WRD0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Unveiling the structural integrity of tunnel-type NaMnO cathode for sodium ion battery</title><source>Royal Society Of Chemistry Journals</source><creator>Chakrabarty, Sankalpita ; Dar, Javeed Ahmad ; Joshi, Akanksha ; Paperni, Arad ; Taragin, Sarah ; Maddegalla, Ananya ; Sai Gautam, Gopalakrishnan ; Mukherjee, Ayan ; Noked, Malachi</creator><creatorcontrib>Chakrabarty, Sankalpita ; Dar, Javeed Ahmad ; Joshi, Akanksha ; Paperni, Arad ; Taragin, Sarah ; Maddegalla, Ananya ; Sai Gautam, Gopalakrishnan ; Mukherjee, Ayan ; Noked, Malachi</creatorcontrib><description>Tunnel-type Na
0.44
MnO
2
(tt-NMO) is a promising cathode for sodium ion battery having excellent structural stability, diffusion kinetics, and low cost. However, this cathode is reported to suffer from low initial charge capacity (
e.g.
, ≤60 mA h g
−1
) due to the limited accessibility of sodium ion extraction (0.22-0.24 Na
+
per formula unit) from the structure, which hinders the practical viability of this material in a full battery cell. In this study, we report a tailored tt-NMO structure, synthesized using a two-step facile and scalable process, with >95% yield. Our tt-NMO demonstrated a 1st charge capacity of 110 mA h g
−1
, followed by a discharge capacity of 115 mA h g
−1
within the potential window of 4-1.7 V
versus
Na/Na
+
. The long-term cycling performance at 0.5C rate and 1C rate (1C = 120 mA h g
−1
) shows excellent structural integrity for over 400 cycles with >75% capacity retention. We show experimentally and support it with DFT (density functional theory) calculations that the unique microstructure of this tt-NMO, with modulated Na-O bond length and Na-O-Na bond angle, results in open channels along the
c
-axis in the
ab
plane, providing a wide pathway for ion diffusion. The Na
+
migration barriers (
E
m
) along the two pathways of the
c
-tunnel are calculated to be within the threshold limit of Na
+
migration energy barrier, which renders more sites electrochemically active, enabling the high 1st charge capacity. This novel study opens possibilities to use this unique tt-NMO as an efficient SIB (sodium ion battery) cathode by harnessing the modified structure.
Tunnel-type Na
0.44
MnO
2
(tt-NMO) is a promising cathode for sodium ion battery having excellent structural stability, diffusion kinetics, and low cost.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d4ta03034f</identifier><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2024-09, Vol.12 (37), p.2519-25116</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chakrabarty, Sankalpita</creatorcontrib><creatorcontrib>Dar, Javeed Ahmad</creatorcontrib><creatorcontrib>Joshi, Akanksha</creatorcontrib><creatorcontrib>Paperni, Arad</creatorcontrib><creatorcontrib>Taragin, Sarah</creatorcontrib><creatorcontrib>Maddegalla, Ananya</creatorcontrib><creatorcontrib>Sai Gautam, Gopalakrishnan</creatorcontrib><creatorcontrib>Mukherjee, Ayan</creatorcontrib><creatorcontrib>Noked, Malachi</creatorcontrib><title>Unveiling the structural integrity of tunnel-type NaMnO cathode for sodium ion battery</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Tunnel-type Na
0.44
MnO
2
(tt-NMO) is a promising cathode for sodium ion battery having excellent structural stability, diffusion kinetics, and low cost. However, this cathode is reported to suffer from low initial charge capacity (
e.g.
, ≤60 mA h g
−1
) due to the limited accessibility of sodium ion extraction (0.22-0.24 Na
+
per formula unit) from the structure, which hinders the practical viability of this material in a full battery cell. In this study, we report a tailored tt-NMO structure, synthesized using a two-step facile and scalable process, with >95% yield. Our tt-NMO demonstrated a 1st charge capacity of 110 mA h g
−1
, followed by a discharge capacity of 115 mA h g
−1
within the potential window of 4-1.7 V
versus
Na/Na
+
. The long-term cycling performance at 0.5C rate and 1C rate (1C = 120 mA h g
−1
) shows excellent structural integrity for over 400 cycles with >75% capacity retention. We show experimentally and support it with DFT (density functional theory) calculations that the unique microstructure of this tt-NMO, with modulated Na-O bond length and Na-O-Na bond angle, results in open channels along the
c
-axis in the
ab
plane, providing a wide pathway for ion diffusion. The Na
+
migration barriers (
E
m
) along the two pathways of the
c
-tunnel are calculated to be within the threshold limit of Na
+
migration energy barrier, which renders more sites electrochemically active, enabling the high 1st charge capacity. This novel study opens possibilities to use this unique tt-NMO as an efficient SIB (sodium ion battery) cathode by harnessing the modified structure.
Tunnel-type Na
0.44
MnO
2
(tt-NMO) is a promising cathode for sodium ion battery having excellent structural stability, diffusion kinetics, and low cost.</description><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFjrEOgjAURRujiURZ3E3eD6APQYTZaFzURV1JhQI10JL2YcLf62B09C7nJGe5jM18XPgYJMs8JI4BBmExYM4K1-htwiQafj2Ox8y19oHvxYhRkjjsdlVPIWupSqBKgCXTZdQZXoNUJEojqQddAHVKidqjvhVw4kd1hoxTpXMBhTZgdS67BqRWcOdEwvRTNip4bYX74YTN97vL9uAZm6WtkQ03ffr7G_zrL49WRD0</recordid><startdate>20240924</startdate><enddate>20240924</enddate><creator>Chakrabarty, Sankalpita</creator><creator>Dar, Javeed Ahmad</creator><creator>Joshi, Akanksha</creator><creator>Paperni, Arad</creator><creator>Taragin, Sarah</creator><creator>Maddegalla, Ananya</creator><creator>Sai Gautam, Gopalakrishnan</creator><creator>Mukherjee, Ayan</creator><creator>Noked, Malachi</creator><scope/></search><sort><creationdate>20240924</creationdate><title>Unveiling the structural integrity of tunnel-type NaMnO cathode for sodium ion battery</title><author>Chakrabarty, Sankalpita ; Dar, Javeed Ahmad ; Joshi, Akanksha ; Paperni, Arad ; Taragin, Sarah ; Maddegalla, Ananya ; Sai Gautam, Gopalakrishnan ; Mukherjee, Ayan ; Noked, Malachi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_d4ta03034f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chakrabarty, Sankalpita</creatorcontrib><creatorcontrib>Dar, Javeed Ahmad</creatorcontrib><creatorcontrib>Joshi, Akanksha</creatorcontrib><creatorcontrib>Paperni, Arad</creatorcontrib><creatorcontrib>Taragin, Sarah</creatorcontrib><creatorcontrib>Maddegalla, Ananya</creatorcontrib><creatorcontrib>Sai Gautam, Gopalakrishnan</creatorcontrib><creatorcontrib>Mukherjee, Ayan</creatorcontrib><creatorcontrib>Noked, Malachi</creatorcontrib><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chakrabarty, Sankalpita</au><au>Dar, Javeed Ahmad</au><au>Joshi, Akanksha</au><au>Paperni, Arad</au><au>Taragin, Sarah</au><au>Maddegalla, Ananya</au><au>Sai Gautam, Gopalakrishnan</au><au>Mukherjee, Ayan</au><au>Noked, Malachi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unveiling the structural integrity of tunnel-type NaMnO cathode for sodium ion battery</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2024-09-24</date><risdate>2024</risdate><volume>12</volume><issue>37</issue><spage>2519</spage><epage>25116</epage><pages>2519-25116</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Tunnel-type Na
0.44
MnO
2
(tt-NMO) is a promising cathode for sodium ion battery having excellent structural stability, diffusion kinetics, and low cost. However, this cathode is reported to suffer from low initial charge capacity (
e.g.
, ≤60 mA h g
−1
) due to the limited accessibility of sodium ion extraction (0.22-0.24 Na
+
per formula unit) from the structure, which hinders the practical viability of this material in a full battery cell. In this study, we report a tailored tt-NMO structure, synthesized using a two-step facile and scalable process, with >95% yield. Our tt-NMO demonstrated a 1st charge capacity of 110 mA h g
−1
, followed by a discharge capacity of 115 mA h g
−1
within the potential window of 4-1.7 V
versus
Na/Na
+
. The long-term cycling performance at 0.5C rate and 1C rate (1C = 120 mA h g
−1
) shows excellent structural integrity for over 400 cycles with >75% capacity retention. We show experimentally and support it with DFT (density functional theory) calculations that the unique microstructure of this tt-NMO, with modulated Na-O bond length and Na-O-Na bond angle, results in open channels along the
c
-axis in the
ab
plane, providing a wide pathway for ion diffusion. The Na
+
migration barriers (
E
m
) along the two pathways of the
c
-tunnel are calculated to be within the threshold limit of Na
+
migration energy barrier, which renders more sites electrochemically active, enabling the high 1st charge capacity. This novel study opens possibilities to use this unique tt-NMO as an efficient SIB (sodium ion battery) cathode by harnessing the modified structure.
Tunnel-type Na
0.44
MnO
2
(tt-NMO) is a promising cathode for sodium ion battery having excellent structural stability, diffusion kinetics, and low cost.</abstract><doi>10.1039/d4ta03034f</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2024-09, Vol.12 (37), p.2519-25116 |
issn | 2050-7488 2050-7496 |
language | |
recordid | cdi_rsc_primary_d4ta03034f |
source | Royal Society Of Chemistry Journals |
title | Unveiling the structural integrity of tunnel-type NaMnO cathode for sodium ion battery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A02%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unveiling%20the%20structural%20integrity%20of%20tunnel-type%20NaMnO%20cathode%20for%20sodium%20ion%20battery&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Chakrabarty,%20Sankalpita&rft.date=2024-09-24&rft.volume=12&rft.issue=37&rft.spage=2519&rft.epage=25116&rft.pages=2519-25116&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d4ta03034f&rft_dat=%3Crsc%3Ed4ta03034f%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |