Photovoltaic-driven stable electrosynthesis of HO in simulated seawater and its disinfection application

Electrosynthesis of H 2 O 2 through O 2 reduction in seawater provides bright sight on the H 2 O 2 industry, which is a prospective alternative to the intensively constructed anthraquinone process. In this work, a photovoltaic-driven flow cell system is built for the electrosynthesis of H 2 O 2 in s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) 2024-11, Vol.15 (45), p.18969-18976
Hauptverfasser: Wen, Yichan, Feng, Youyou, Wei, Jing, Zhang, Ting, Cai, Chengcheng, Sun, Jiyi, Qian, Xufang, Zhao, Yixin
Format: Artikel
Sprache:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18976
container_issue 45
container_start_page 18969
container_title Chemical science (Cambridge)
container_volume 15
creator Wen, Yichan
Feng, Youyou
Wei, Jing
Zhang, Ting
Cai, Chengcheng
Sun, Jiyi
Qian, Xufang
Zhao, Yixin
description Electrosynthesis of H 2 O 2 through O 2 reduction in seawater provides bright sight on the H 2 O 2 industry, which is a prospective alternative to the intensively constructed anthraquinone process. In this work, a photovoltaic-driven flow cell system is built for the electrosynthesis of H 2 O 2 in simulated seawater using N-doped carbon catalysts. The N-doped carbon catalysts with multiple N-doped carbon defects can achieve a record-high H 2 O 2 production rate of 34.7 mol g catalyst −1 h −1 under an industrially relevant current density of 500 mA cm −2 and a long-term stability over 200 h in simulated seawater (0.5 M NaCl). When driven by the photovoltaic system, a H 2 O 2 solution of ∼1.0 wt% in 0.5 M NaCl is also obtained at about 700 mA cm −2 . The obtained solution is applied for disinfection of mouse wounds, with a removal rate of 100% for Escherichia coli and negligible toxicity to living organisms. It provides bright prospects for large-scale on-site H 2 O 2 production and on-demand disinfection. The N-doped carbon catalysts achieved a record-high H 2 O 2 production rate under an industrial current density over 200 h in simulated seawater. This H 2 O 2 solution achieved 100% removal rate for E. coli and negligible toxicity to living organisms.
doi_str_mv 10.1039/d4sc05909c
format Article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_d4sc05909c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d4sc05909c</sourcerecordid><originalsourceid>FETCH-rsc_primary_d4sc05909c3</originalsourceid><addsrcrecordid>eNqFjzGLAjEUhIOcoJw29sL7A6vZjatsLYqdFvbyTLLsk5gseVHx37uCeOVNMx_MTDFCTHI5y6Wq5mbBWpaVrHRPDAu5yLNlqaqfLxdyIMbMF9lJqbwsVkPRHJqQwj24hKQzE-luPXDCs7NgndUpBn761FgmhlDDbg_UFeh6c5isAbb46CACegOUGAwx-bobUvCAbetI45tHol-jYzv--K-YbjfH9S6LrE9tpCvG5-nvgfovfwFP2Eun</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Photovoltaic-driven stable electrosynthesis of HO in simulated seawater and its disinfection application</title><source>PubMed Central(OpenAccess)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Directory of Open Access Journals</source><source>PubMed Central Open Access</source><creator>Wen, Yichan ; Feng, Youyou ; Wei, Jing ; Zhang, Ting ; Cai, Chengcheng ; Sun, Jiyi ; Qian, Xufang ; Zhao, Yixin</creator><creatorcontrib>Wen, Yichan ; Feng, Youyou ; Wei, Jing ; Zhang, Ting ; Cai, Chengcheng ; Sun, Jiyi ; Qian, Xufang ; Zhao, Yixin</creatorcontrib><description>Electrosynthesis of H 2 O 2 through O 2 reduction in seawater provides bright sight on the H 2 O 2 industry, which is a prospective alternative to the intensively constructed anthraquinone process. In this work, a photovoltaic-driven flow cell system is built for the electrosynthesis of H 2 O 2 in simulated seawater using N-doped carbon catalysts. The N-doped carbon catalysts with multiple N-doped carbon defects can achieve a record-high H 2 O 2 production rate of 34.7 mol g catalyst −1 h −1 under an industrially relevant current density of 500 mA cm −2 and a long-term stability over 200 h in simulated seawater (0.5 M NaCl). When driven by the photovoltaic system, a H 2 O 2 solution of ∼1.0 wt% in 0.5 M NaCl is also obtained at about 700 mA cm −2 . The obtained solution is applied for disinfection of mouse wounds, with a removal rate of 100% for Escherichia coli and negligible toxicity to living organisms. It provides bright prospects for large-scale on-site H 2 O 2 production and on-demand disinfection. The N-doped carbon catalysts achieved a record-high H 2 O 2 production rate under an industrial current density over 200 h in simulated seawater. This H 2 O 2 solution achieved 100% removal rate for E. coli and negligible toxicity to living organisms.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/d4sc05909c</identifier><ispartof>Chemical science (Cambridge), 2024-11, Vol.15 (45), p.18969-18976</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27903,27904</link.rule.ids></links><search><creatorcontrib>Wen, Yichan</creatorcontrib><creatorcontrib>Feng, Youyou</creatorcontrib><creatorcontrib>Wei, Jing</creatorcontrib><creatorcontrib>Zhang, Ting</creatorcontrib><creatorcontrib>Cai, Chengcheng</creatorcontrib><creatorcontrib>Sun, Jiyi</creatorcontrib><creatorcontrib>Qian, Xufang</creatorcontrib><creatorcontrib>Zhao, Yixin</creatorcontrib><title>Photovoltaic-driven stable electrosynthesis of HO in simulated seawater and its disinfection application</title><title>Chemical science (Cambridge)</title><description>Electrosynthesis of H 2 O 2 through O 2 reduction in seawater provides bright sight on the H 2 O 2 industry, which is a prospective alternative to the intensively constructed anthraquinone process. In this work, a photovoltaic-driven flow cell system is built for the electrosynthesis of H 2 O 2 in simulated seawater using N-doped carbon catalysts. The N-doped carbon catalysts with multiple N-doped carbon defects can achieve a record-high H 2 O 2 production rate of 34.7 mol g catalyst −1 h −1 under an industrially relevant current density of 500 mA cm −2 and a long-term stability over 200 h in simulated seawater (0.5 M NaCl). When driven by the photovoltaic system, a H 2 O 2 solution of ∼1.0 wt% in 0.5 M NaCl is also obtained at about 700 mA cm −2 . The obtained solution is applied for disinfection of mouse wounds, with a removal rate of 100% for Escherichia coli and negligible toxicity to living organisms. It provides bright prospects for large-scale on-site H 2 O 2 production and on-demand disinfection. The N-doped carbon catalysts achieved a record-high H 2 O 2 production rate under an industrial current density over 200 h in simulated seawater. This H 2 O 2 solution achieved 100% removal rate for E. coli and negligible toxicity to living organisms.</description><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFjzGLAjEUhIOcoJw29sL7A6vZjatsLYqdFvbyTLLsk5gseVHx37uCeOVNMx_MTDFCTHI5y6Wq5mbBWpaVrHRPDAu5yLNlqaqfLxdyIMbMF9lJqbwsVkPRHJqQwj24hKQzE-luPXDCs7NgndUpBn761FgmhlDDbg_UFeh6c5isAbb46CACegOUGAwx-bobUvCAbetI45tHol-jYzv--K-YbjfH9S6LrE9tpCvG5-nvgfovfwFP2Eun</recordid><startdate>20241120</startdate><enddate>20241120</enddate><creator>Wen, Yichan</creator><creator>Feng, Youyou</creator><creator>Wei, Jing</creator><creator>Zhang, Ting</creator><creator>Cai, Chengcheng</creator><creator>Sun, Jiyi</creator><creator>Qian, Xufang</creator><creator>Zhao, Yixin</creator><scope/></search><sort><creationdate>20241120</creationdate><title>Photovoltaic-driven stable electrosynthesis of HO in simulated seawater and its disinfection application</title><author>Wen, Yichan ; Feng, Youyou ; Wei, Jing ; Zhang, Ting ; Cai, Chengcheng ; Sun, Jiyi ; Qian, Xufang ; Zhao, Yixin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_d4sc05909c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wen, Yichan</creatorcontrib><creatorcontrib>Feng, Youyou</creatorcontrib><creatorcontrib>Wei, Jing</creatorcontrib><creatorcontrib>Zhang, Ting</creatorcontrib><creatorcontrib>Cai, Chengcheng</creatorcontrib><creatorcontrib>Sun, Jiyi</creatorcontrib><creatorcontrib>Qian, Xufang</creatorcontrib><creatorcontrib>Zhao, Yixin</creatorcontrib><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wen, Yichan</au><au>Feng, Youyou</au><au>Wei, Jing</au><au>Zhang, Ting</au><au>Cai, Chengcheng</au><au>Sun, Jiyi</au><au>Qian, Xufang</au><au>Zhao, Yixin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photovoltaic-driven stable electrosynthesis of HO in simulated seawater and its disinfection application</atitle><jtitle>Chemical science (Cambridge)</jtitle><date>2024-11-20</date><risdate>2024</risdate><volume>15</volume><issue>45</issue><spage>18969</spage><epage>18976</epage><pages>18969-18976</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>Electrosynthesis of H 2 O 2 through O 2 reduction in seawater provides bright sight on the H 2 O 2 industry, which is a prospective alternative to the intensively constructed anthraquinone process. In this work, a photovoltaic-driven flow cell system is built for the electrosynthesis of H 2 O 2 in simulated seawater using N-doped carbon catalysts. The N-doped carbon catalysts with multiple N-doped carbon defects can achieve a record-high H 2 O 2 production rate of 34.7 mol g catalyst −1 h −1 under an industrially relevant current density of 500 mA cm −2 and a long-term stability over 200 h in simulated seawater (0.5 M NaCl). When driven by the photovoltaic system, a H 2 O 2 solution of ∼1.0 wt% in 0.5 M NaCl is also obtained at about 700 mA cm −2 . The obtained solution is applied for disinfection of mouse wounds, with a removal rate of 100% for Escherichia coli and negligible toxicity to living organisms. It provides bright prospects for large-scale on-site H 2 O 2 production and on-demand disinfection. The N-doped carbon catalysts achieved a record-high H 2 O 2 production rate under an industrial current density over 200 h in simulated seawater. This H 2 O 2 solution achieved 100% removal rate for E. coli and negligible toxicity to living organisms.</abstract><doi>10.1039/d4sc05909c</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2041-6520
ispartof Chemical science (Cambridge), 2024-11, Vol.15 (45), p.18969-18976
issn 2041-6520
2041-6539
language
recordid cdi_rsc_primary_d4sc05909c
source PubMed Central(OpenAccess); EZB-FREE-00999 freely available EZB journals; Directory of Open Access Journals; PubMed Central Open Access
title Photovoltaic-driven stable electrosynthesis of HO in simulated seawater and its disinfection application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A58%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photovoltaic-driven%20stable%20electrosynthesis%20of%20HO%20in%20simulated%20seawater%20and%20its%20disinfection%20application&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Wen,%20Yichan&rft.date=2024-11-20&rft.volume=15&rft.issue=45&rft.spage=18969&rft.epage=18976&rft.pages=18969-18976&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/d4sc05909c&rft_dat=%3Crsc%3Ed4sc05909c%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true