A triazole-based covalent organic framework as a photocatalyst toward visible-light-driven CO reduction to CH

Solar-light driven reduction of CO 2 to CH 4 is a complex process involving multiple electron and proton transfer processes with various intermediates. Therefore, achieving high CH 4 activity and selectivity remains a significant challenge. Covalent organic frameworks (COFs) represent an emerging cl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) 2024-10, Vol.15 (39), p.16259-1627
Hauptverfasser: Biswas, Sandip, Rahimi, Faruk Ahamed, Saravanan, R. Kamal, Dey, Anupam, Chauhan, Jatin, Surendran, Devika, Nath, Sukhendu, Maji, Tapas Kumar
Format: Artikel
Sprache:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1627
container_issue 39
container_start_page 16259
container_title Chemical science (Cambridge)
container_volume 15
creator Biswas, Sandip
Rahimi, Faruk Ahamed
Saravanan, R. Kamal
Dey, Anupam
Chauhan, Jatin
Surendran, Devika
Nath, Sukhendu
Maji, Tapas Kumar
description Solar-light driven reduction of CO 2 to CH 4 is a complex process involving multiple electron and proton transfer processes with various intermediates. Therefore, achieving high CH 4 activity and selectivity remains a significant challenge. Covalent organic frameworks (COFs) represent an emerging class of photoactive semiconductors with molecular level structural tunability, modular band gaps, and high charge carrier generation and transport within the network. Here, we developed a new heterocyclic triazole ring containing COF, TFPB-TRZ , through the condensation reaction between 1,3,5-tris(4-formylphenyl)benzene (TFPB) and 3,5-diamino-1,2,4-triazole (TRZ). The TFPB-TRZ COF with multiple heteroatoms shows suitable visible light absorption, high CO 2 uptake capability and an appropriate band diagram for CO 2 photoreduction. Photocatalysis results reveal a maximum CO 2 to CH 4 conversion of 2.34 mmol g −1 with a rate of 128 μmol g −1 h −1 and high selectivity (∼99%) using 1-benzyl-1,4-dihydronicotinamide (BNAH) and triethylamine (TEA) as sacrificial agents. Under similar reaction conditions in the presence of direct sunlight, the TFPB-TRZ COF displays a maximum CH 4 yield of 493 μmol g −1 with a rate of 61.62 μmol g −1 h −1 , suggesting the robustness and light-harvesting ability of the COF photocatalyst. A femtosecond transient absorption (TA) spectroscopy study shows fast decay of excited state absorption (ESA) in the COF compared to the TFPB building unit due to efficient electron transfer to the catalytic site in the framework. The mechanism of CO 2 reduction to CH 4 is studied by DFT-based theoretical calculation, which is further supported by an in situ diffuse reflectance infrared Fourier transform spectroscopic (DRIFTS) study. The DFT results reveal that the lone pair of electrons on nitrogen heteroatoms present in the triazole ring of the TRZ moiety help in the stabilization of the CO intermediate during CO 2 to CH 4 conversion. Overall, this work demonstrates the use of a metal-free, recyclable COF-based photocatalytic system for solar energy storage by CO 2 reduction. Rational design of a TFPB-TRZ COF bearing the small and heteroatom-rich organic node TRZ (triazole moiety) which facilitates the stabilization of the CO intermediate at the imine (-C&z.dbd;N-) site of the COF via electron donation from an N-hetero species.
doi_str_mv 10.1039/d4sc03163f
format Article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_d4sc03163f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d4sc03163f</sourcerecordid><originalsourceid>FETCH-rsc_primary_d4sc03163f3</originalsourceid><addsrcrecordid>eNqFjz-LAjEUxIOcoJw29sL7AqvJxj9YynJid429PJOsRrMbeS-ueJ_eLUTLm2YGfsPACDFScqKkXk3tjI3UaqHLjujncqayxVyvvt45lz0xZD7LVlqreb7si2oNiTz-xeCyA7KzYGKDwdUJIh2x9gZKwsrdI10AGRCup5iiwYThwQlSvCNZaDz7QzsR_PGUMku-cTUUv0DO3kzysW6LUGwHoltiYDd8-bcYb352xTYjNvsr-Qrpsf_c0P_xJ1dETEQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A triazole-based covalent organic framework as a photocatalyst toward visible-light-driven CO reduction to CH</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Biswas, Sandip ; Rahimi, Faruk Ahamed ; Saravanan, R. Kamal ; Dey, Anupam ; Chauhan, Jatin ; Surendran, Devika ; Nath, Sukhendu ; Maji, Tapas Kumar</creator><creatorcontrib>Biswas, Sandip ; Rahimi, Faruk Ahamed ; Saravanan, R. Kamal ; Dey, Anupam ; Chauhan, Jatin ; Surendran, Devika ; Nath, Sukhendu ; Maji, Tapas Kumar</creatorcontrib><description>Solar-light driven reduction of CO 2 to CH 4 is a complex process involving multiple electron and proton transfer processes with various intermediates. Therefore, achieving high CH 4 activity and selectivity remains a significant challenge. Covalent organic frameworks (COFs) represent an emerging class of photoactive semiconductors with molecular level structural tunability, modular band gaps, and high charge carrier generation and transport within the network. Here, we developed a new heterocyclic triazole ring containing COF, TFPB-TRZ , through the condensation reaction between 1,3,5-tris(4-formylphenyl)benzene (TFPB) and 3,5-diamino-1,2,4-triazole (TRZ). The TFPB-TRZ COF with multiple heteroatoms shows suitable visible light absorption, high CO 2 uptake capability and an appropriate band diagram for CO 2 photoreduction. Photocatalysis results reveal a maximum CO 2 to CH 4 conversion of 2.34 mmol g −1 with a rate of 128 μmol g −1 h −1 and high selectivity (∼99%) using 1-benzyl-1,4-dihydronicotinamide (BNAH) and triethylamine (TEA) as sacrificial agents. Under similar reaction conditions in the presence of direct sunlight, the TFPB-TRZ COF displays a maximum CH 4 yield of 493 μmol g −1 with a rate of 61.62 μmol g −1 h −1 , suggesting the robustness and light-harvesting ability of the COF photocatalyst. A femtosecond transient absorption (TA) spectroscopy study shows fast decay of excited state absorption (ESA) in the COF compared to the TFPB building unit due to efficient electron transfer to the catalytic site in the framework. The mechanism of CO 2 reduction to CH 4 is studied by DFT-based theoretical calculation, which is further supported by an in situ diffuse reflectance infrared Fourier transform spectroscopic (DRIFTS) study. The DFT results reveal that the lone pair of electrons on nitrogen heteroatoms present in the triazole ring of the TRZ moiety help in the stabilization of the CO intermediate during CO 2 to CH 4 conversion. Overall, this work demonstrates the use of a metal-free, recyclable COF-based photocatalytic system for solar energy storage by CO 2 reduction. Rational design of a TFPB-TRZ COF bearing the small and heteroatom-rich organic node TRZ (triazole moiety) which facilitates the stabilization of the CO intermediate at the imine (-C&amp;z.dbd;N-) site of the COF via electron donation from an N-hetero species.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/d4sc03163f</identifier><ispartof>Chemical science (Cambridge), 2024-10, Vol.15 (39), p.16259-1627</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27902,27903</link.rule.ids></links><search><creatorcontrib>Biswas, Sandip</creatorcontrib><creatorcontrib>Rahimi, Faruk Ahamed</creatorcontrib><creatorcontrib>Saravanan, R. Kamal</creatorcontrib><creatorcontrib>Dey, Anupam</creatorcontrib><creatorcontrib>Chauhan, Jatin</creatorcontrib><creatorcontrib>Surendran, Devika</creatorcontrib><creatorcontrib>Nath, Sukhendu</creatorcontrib><creatorcontrib>Maji, Tapas Kumar</creatorcontrib><title>A triazole-based covalent organic framework as a photocatalyst toward visible-light-driven CO reduction to CH</title><title>Chemical science (Cambridge)</title><description>Solar-light driven reduction of CO 2 to CH 4 is a complex process involving multiple electron and proton transfer processes with various intermediates. Therefore, achieving high CH 4 activity and selectivity remains a significant challenge. Covalent organic frameworks (COFs) represent an emerging class of photoactive semiconductors with molecular level structural tunability, modular band gaps, and high charge carrier generation and transport within the network. Here, we developed a new heterocyclic triazole ring containing COF, TFPB-TRZ , through the condensation reaction between 1,3,5-tris(4-formylphenyl)benzene (TFPB) and 3,5-diamino-1,2,4-triazole (TRZ). The TFPB-TRZ COF with multiple heteroatoms shows suitable visible light absorption, high CO 2 uptake capability and an appropriate band diagram for CO 2 photoreduction. Photocatalysis results reveal a maximum CO 2 to CH 4 conversion of 2.34 mmol g −1 with a rate of 128 μmol g −1 h −1 and high selectivity (∼99%) using 1-benzyl-1,4-dihydronicotinamide (BNAH) and triethylamine (TEA) as sacrificial agents. Under similar reaction conditions in the presence of direct sunlight, the TFPB-TRZ COF displays a maximum CH 4 yield of 493 μmol g −1 with a rate of 61.62 μmol g −1 h −1 , suggesting the robustness and light-harvesting ability of the COF photocatalyst. A femtosecond transient absorption (TA) spectroscopy study shows fast decay of excited state absorption (ESA) in the COF compared to the TFPB building unit due to efficient electron transfer to the catalytic site in the framework. The mechanism of CO 2 reduction to CH 4 is studied by DFT-based theoretical calculation, which is further supported by an in situ diffuse reflectance infrared Fourier transform spectroscopic (DRIFTS) study. The DFT results reveal that the lone pair of electrons on nitrogen heteroatoms present in the triazole ring of the TRZ moiety help in the stabilization of the CO intermediate during CO 2 to CH 4 conversion. Overall, this work demonstrates the use of a metal-free, recyclable COF-based photocatalytic system for solar energy storage by CO 2 reduction. Rational design of a TFPB-TRZ COF bearing the small and heteroatom-rich organic node TRZ (triazole moiety) which facilitates the stabilization of the CO intermediate at the imine (-C&amp;z.dbd;N-) site of the COF via electron donation from an N-hetero species.</description><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFjz-LAjEUxIOcoJw29sL7AqvJxj9YynJid429PJOsRrMbeS-ueJ_eLUTLm2YGfsPACDFScqKkXk3tjI3UaqHLjujncqayxVyvvt45lz0xZD7LVlqreb7si2oNiTz-xeCyA7KzYGKDwdUJIh2x9gZKwsrdI10AGRCup5iiwYThwQlSvCNZaDz7QzsR_PGUMku-cTUUv0DO3kzysW6LUGwHoltiYDd8-bcYb352xTYjNvsr-Qrpsf_c0P_xJ1dETEQ</recordid><startdate>20241009</startdate><enddate>20241009</enddate><creator>Biswas, Sandip</creator><creator>Rahimi, Faruk Ahamed</creator><creator>Saravanan, R. Kamal</creator><creator>Dey, Anupam</creator><creator>Chauhan, Jatin</creator><creator>Surendran, Devika</creator><creator>Nath, Sukhendu</creator><creator>Maji, Tapas Kumar</creator><scope/></search><sort><creationdate>20241009</creationdate><title>A triazole-based covalent organic framework as a photocatalyst toward visible-light-driven CO reduction to CH</title><author>Biswas, Sandip ; Rahimi, Faruk Ahamed ; Saravanan, R. Kamal ; Dey, Anupam ; Chauhan, Jatin ; Surendran, Devika ; Nath, Sukhendu ; Maji, Tapas Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_d4sc03163f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biswas, Sandip</creatorcontrib><creatorcontrib>Rahimi, Faruk Ahamed</creatorcontrib><creatorcontrib>Saravanan, R. Kamal</creatorcontrib><creatorcontrib>Dey, Anupam</creatorcontrib><creatorcontrib>Chauhan, Jatin</creatorcontrib><creatorcontrib>Surendran, Devika</creatorcontrib><creatorcontrib>Nath, Sukhendu</creatorcontrib><creatorcontrib>Maji, Tapas Kumar</creatorcontrib><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biswas, Sandip</au><au>Rahimi, Faruk Ahamed</au><au>Saravanan, R. Kamal</au><au>Dey, Anupam</au><au>Chauhan, Jatin</au><au>Surendran, Devika</au><au>Nath, Sukhendu</au><au>Maji, Tapas Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A triazole-based covalent organic framework as a photocatalyst toward visible-light-driven CO reduction to CH</atitle><jtitle>Chemical science (Cambridge)</jtitle><date>2024-10-09</date><risdate>2024</risdate><volume>15</volume><issue>39</issue><spage>16259</spage><epage>1627</epage><pages>16259-1627</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>Solar-light driven reduction of CO 2 to CH 4 is a complex process involving multiple electron and proton transfer processes with various intermediates. Therefore, achieving high CH 4 activity and selectivity remains a significant challenge. Covalent organic frameworks (COFs) represent an emerging class of photoactive semiconductors with molecular level structural tunability, modular band gaps, and high charge carrier generation and transport within the network. Here, we developed a new heterocyclic triazole ring containing COF, TFPB-TRZ , through the condensation reaction between 1,3,5-tris(4-formylphenyl)benzene (TFPB) and 3,5-diamino-1,2,4-triazole (TRZ). The TFPB-TRZ COF with multiple heteroatoms shows suitable visible light absorption, high CO 2 uptake capability and an appropriate band diagram for CO 2 photoreduction. Photocatalysis results reveal a maximum CO 2 to CH 4 conversion of 2.34 mmol g −1 with a rate of 128 μmol g −1 h −1 and high selectivity (∼99%) using 1-benzyl-1,4-dihydronicotinamide (BNAH) and triethylamine (TEA) as sacrificial agents. Under similar reaction conditions in the presence of direct sunlight, the TFPB-TRZ COF displays a maximum CH 4 yield of 493 μmol g −1 with a rate of 61.62 μmol g −1 h −1 , suggesting the robustness and light-harvesting ability of the COF photocatalyst. A femtosecond transient absorption (TA) spectroscopy study shows fast decay of excited state absorption (ESA) in the COF compared to the TFPB building unit due to efficient electron transfer to the catalytic site in the framework. The mechanism of CO 2 reduction to CH 4 is studied by DFT-based theoretical calculation, which is further supported by an in situ diffuse reflectance infrared Fourier transform spectroscopic (DRIFTS) study. The DFT results reveal that the lone pair of electrons on nitrogen heteroatoms present in the triazole ring of the TRZ moiety help in the stabilization of the CO intermediate during CO 2 to CH 4 conversion. Overall, this work demonstrates the use of a metal-free, recyclable COF-based photocatalytic system for solar energy storage by CO 2 reduction. Rational design of a TFPB-TRZ COF bearing the small and heteroatom-rich organic node TRZ (triazole moiety) which facilitates the stabilization of the CO intermediate at the imine (-C&amp;z.dbd;N-) site of the COF via electron donation from an N-hetero species.</abstract><doi>10.1039/d4sc03163f</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2041-6520
ispartof Chemical science (Cambridge), 2024-10, Vol.15 (39), p.16259-1627
issn 2041-6520
2041-6539
language
recordid cdi_rsc_primary_d4sc03163f
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
title A triazole-based covalent organic framework as a photocatalyst toward visible-light-driven CO reduction to CH
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T08%3A53%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20triazole-based%20covalent%20organic%20framework%20as%20a%20photocatalyst%20toward%20visible-light-driven%20CO%20reduction%20to%20CH&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Biswas,%20Sandip&rft.date=2024-10-09&rft.volume=15&rft.issue=39&rft.spage=16259&rft.epage=1627&rft.pages=16259-1627&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/d4sc03163f&rft_dat=%3Crsc%3Ed4sc03163f%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true