Hierarchical NiCoO@CuS composite electrode with enhanced surface area for high-performance hybrid supercapacitors

Hierarchical binder-free NiCo 2 O 4 @CuS composite electrodes have been successfully fabricated on a nickel foam surface using a facile hydrothermal method and directly used as a battery-type electrode material for supercapacitor applications. The surface morphological studies reveal that the compos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2024-12, Vol.14 (54), p.487-497
Hauptverfasser: Muralee Gopi, Chandu V. V, Kulurumotlakatla, Dasha Kumar, Raghavendra, K. V. G, Suneetha, Maduru, Ramesh, R
Format: Artikel
Sprache:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 497
container_issue 54
container_start_page 487
container_title RSC advances
container_volume 14
creator Muralee Gopi, Chandu V. V
Kulurumotlakatla, Dasha Kumar
Raghavendra, K. V. G
Suneetha, Maduru
Ramesh, R
description Hierarchical binder-free NiCo 2 O 4 @CuS composite electrodes have been successfully fabricated on a nickel foam surface using a facile hydrothermal method and directly used as a battery-type electrode material for supercapacitor applications. The surface morphological studies reveal that the composite electrode exhibited porous NiCo 2 O 4 nanograss-like structures with CuS nanostructures. The surface area of the composite is significantly enhanced (91.38 m 2 g 1 ) compared to NiCo 2 O 4 (52.16 m 2 g −1 ), with a predominant pore size of 3-6 nm. This synergistic combination enhanced the electrode's electrochemical properties. The NiCo 2 O 4 @CuS electrode delivered an impressive specific capacitance of 141.13 mA h g −1 at 1 A g 1 , surpassing the performance of the bare NiCo 2 O 4 electrode. The composite electrode also exhibited excellent rate capability and cycling stability, retaining 87.49% of its initial capacity at high current densities and 88.62% after 3000 cycles. A hybrid supercapacitor (HSC) device assembled using NiCo 2 O 4 @CuS and G-ink electrodes attained a peak energy density of 28.85 W h kg −1 at a power density of 238.2 W kg −1 , outperforming many reported HSCs. Additionally, the HSC device demonstrated exceptional cycling stability, retaining 87.59% of its initial capacitance after 4000 cycles. The superior performance of the NiCo 2 O 4 @CuS composite electrode is attributed to the synergistic combination of NiCo 2 O 4 and CuS, which promotes interfacial electron separation and facilitates rapid electron transfer. Hierarchical NiCo 2 O 4 @CuS composite electrodes, synthesized via a hydrothermal method, exhibit superior electrochemical performance as battery-type electrode materials for supercapacitors, outperforming bare NiCo 2 O 4 .
doi_str_mv 10.1039/d4ra07808j
format Article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_d4ra07808j</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d4ra07808j</sourcerecordid><originalsourceid>FETCH-rsc_primary_d4ra07808j3</originalsourceid><addsrcrecordid>eNqFjjGLwlAQhB_CwYmXxv5g_0D0JXpROyEoVlrc9bJuNvdWEl_cFxH_vREES6eZYeYrxphhYkeJnSzGxVTRzuZ2fuyZfmqnWZzabPFpohCOtlP2k6RZ0jfnjbCikhPCCraS-90yv_wC-brxQVoGrpha9QXDVVoHfHJ4Ii4gXLREYkBlhNIrOPl3ccPa5fqBgLsdVB5gVxI2SNJ6DV_mo8QqcPT0gfler_7yTayB9o1KjXrbv-5P3u137zBMrA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hierarchical NiCoO@CuS composite electrode with enhanced surface area for high-performance hybrid supercapacitors</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><creator>Muralee Gopi, Chandu V. V ; Kulurumotlakatla, Dasha Kumar ; Raghavendra, K. V. G ; Suneetha, Maduru ; Ramesh, R</creator><creatorcontrib>Muralee Gopi, Chandu V. V ; Kulurumotlakatla, Dasha Kumar ; Raghavendra, K. V. G ; Suneetha, Maduru ; Ramesh, R</creatorcontrib><description>Hierarchical binder-free NiCo 2 O 4 @CuS composite electrodes have been successfully fabricated on a nickel foam surface using a facile hydrothermal method and directly used as a battery-type electrode material for supercapacitor applications. The surface morphological studies reveal that the composite electrode exhibited porous NiCo 2 O 4 nanograss-like structures with CuS nanostructures. The surface area of the composite is significantly enhanced (91.38 m 2 g 1 ) compared to NiCo 2 O 4 (52.16 m 2 g −1 ), with a predominant pore size of 3-6 nm. This synergistic combination enhanced the electrode's electrochemical properties. The NiCo 2 O 4 @CuS electrode delivered an impressive specific capacitance of 141.13 mA h g −1 at 1 A g 1 , surpassing the performance of the bare NiCo 2 O 4 electrode. The composite electrode also exhibited excellent rate capability and cycling stability, retaining 87.49% of its initial capacity at high current densities and 88.62% after 3000 cycles. A hybrid supercapacitor (HSC) device assembled using NiCo 2 O 4 @CuS and G-ink electrodes attained a peak energy density of 28.85 W h kg −1 at a power density of 238.2 W kg −1 , outperforming many reported HSCs. Additionally, the HSC device demonstrated exceptional cycling stability, retaining 87.59% of its initial capacitance after 4000 cycles. The superior performance of the NiCo 2 O 4 @CuS composite electrode is attributed to the synergistic combination of NiCo 2 O 4 and CuS, which promotes interfacial electron separation and facilitates rapid electron transfer. Hierarchical NiCo 2 O 4 @CuS composite electrodes, synthesized via a hydrothermal method, exhibit superior electrochemical performance as battery-type electrode materials for supercapacitors, outperforming bare NiCo 2 O 4 .</description><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d4ra07808j</identifier><ispartof>RSC advances, 2024-12, Vol.14 (54), p.487-497</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Muralee Gopi, Chandu V. V</creatorcontrib><creatorcontrib>Kulurumotlakatla, Dasha Kumar</creatorcontrib><creatorcontrib>Raghavendra, K. V. G</creatorcontrib><creatorcontrib>Suneetha, Maduru</creatorcontrib><creatorcontrib>Ramesh, R</creatorcontrib><title>Hierarchical NiCoO@CuS composite electrode with enhanced surface area for high-performance hybrid supercapacitors</title><title>RSC advances</title><description>Hierarchical binder-free NiCo 2 O 4 @CuS composite electrodes have been successfully fabricated on a nickel foam surface using a facile hydrothermal method and directly used as a battery-type electrode material for supercapacitor applications. The surface morphological studies reveal that the composite electrode exhibited porous NiCo 2 O 4 nanograss-like structures with CuS nanostructures. The surface area of the composite is significantly enhanced (91.38 m 2 g 1 ) compared to NiCo 2 O 4 (52.16 m 2 g −1 ), with a predominant pore size of 3-6 nm. This synergistic combination enhanced the electrode's electrochemical properties. The NiCo 2 O 4 @CuS electrode delivered an impressive specific capacitance of 141.13 mA h g −1 at 1 A g 1 , surpassing the performance of the bare NiCo 2 O 4 electrode. The composite electrode also exhibited excellent rate capability and cycling stability, retaining 87.49% of its initial capacity at high current densities and 88.62% after 3000 cycles. A hybrid supercapacitor (HSC) device assembled using NiCo 2 O 4 @CuS and G-ink electrodes attained a peak energy density of 28.85 W h kg −1 at a power density of 238.2 W kg −1 , outperforming many reported HSCs. Additionally, the HSC device demonstrated exceptional cycling stability, retaining 87.59% of its initial capacitance after 4000 cycles. The superior performance of the NiCo 2 O 4 @CuS composite electrode is attributed to the synergistic combination of NiCo 2 O 4 and CuS, which promotes interfacial electron separation and facilitates rapid electron transfer. Hierarchical NiCo 2 O 4 @CuS composite electrodes, synthesized via a hydrothermal method, exhibit superior electrochemical performance as battery-type electrode materials for supercapacitors, outperforming bare NiCo 2 O 4 .</description><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFjjGLwlAQhB_CwYmXxv5g_0D0JXpROyEoVlrc9bJuNvdWEl_cFxH_vREES6eZYeYrxphhYkeJnSzGxVTRzuZ2fuyZfmqnWZzabPFpohCOtlP2k6RZ0jfnjbCikhPCCraS-90yv_wC-brxQVoGrpha9QXDVVoHfHJ4Ii4gXLREYkBlhNIrOPl3ccPa5fqBgLsdVB5gVxI2SNJ6DV_mo8QqcPT0gfler_7yTayB9o1KjXrbv-5P3u137zBMrA</recordid><startdate>20241223</startdate><enddate>20241223</enddate><creator>Muralee Gopi, Chandu V. V</creator><creator>Kulurumotlakatla, Dasha Kumar</creator><creator>Raghavendra, K. V. G</creator><creator>Suneetha, Maduru</creator><creator>Ramesh, R</creator><scope/></search><sort><creationdate>20241223</creationdate><title>Hierarchical NiCoO@CuS composite electrode with enhanced surface area for high-performance hybrid supercapacitors</title><author>Muralee Gopi, Chandu V. V ; Kulurumotlakatla, Dasha Kumar ; Raghavendra, K. V. G ; Suneetha, Maduru ; Ramesh, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_d4ra07808j3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muralee Gopi, Chandu V. V</creatorcontrib><creatorcontrib>Kulurumotlakatla, Dasha Kumar</creatorcontrib><creatorcontrib>Raghavendra, K. V. G</creatorcontrib><creatorcontrib>Suneetha, Maduru</creatorcontrib><creatorcontrib>Ramesh, R</creatorcontrib><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muralee Gopi, Chandu V. V</au><au>Kulurumotlakatla, Dasha Kumar</au><au>Raghavendra, K. V. G</au><au>Suneetha, Maduru</au><au>Ramesh, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchical NiCoO@CuS composite electrode with enhanced surface area for high-performance hybrid supercapacitors</atitle><jtitle>RSC advances</jtitle><date>2024-12-23</date><risdate>2024</risdate><volume>14</volume><issue>54</issue><spage>487</spage><epage>497</epage><pages>487-497</pages><eissn>2046-2069</eissn><abstract>Hierarchical binder-free NiCo 2 O 4 @CuS composite electrodes have been successfully fabricated on a nickel foam surface using a facile hydrothermal method and directly used as a battery-type electrode material for supercapacitor applications. The surface morphological studies reveal that the composite electrode exhibited porous NiCo 2 O 4 nanograss-like structures with CuS nanostructures. The surface area of the composite is significantly enhanced (91.38 m 2 g 1 ) compared to NiCo 2 O 4 (52.16 m 2 g −1 ), with a predominant pore size of 3-6 nm. This synergistic combination enhanced the electrode's electrochemical properties. The NiCo 2 O 4 @CuS electrode delivered an impressive specific capacitance of 141.13 mA h g −1 at 1 A g 1 , surpassing the performance of the bare NiCo 2 O 4 electrode. The composite electrode also exhibited excellent rate capability and cycling stability, retaining 87.49% of its initial capacity at high current densities and 88.62% after 3000 cycles. A hybrid supercapacitor (HSC) device assembled using NiCo 2 O 4 @CuS and G-ink electrodes attained a peak energy density of 28.85 W h kg −1 at a power density of 238.2 W kg −1 , outperforming many reported HSCs. Additionally, the HSC device demonstrated exceptional cycling stability, retaining 87.59% of its initial capacitance after 4000 cycles. The superior performance of the NiCo 2 O 4 @CuS composite electrode is attributed to the synergistic combination of NiCo 2 O 4 and CuS, which promotes interfacial electron separation and facilitates rapid electron transfer. Hierarchical NiCo 2 O 4 @CuS composite electrodes, synthesized via a hydrothermal method, exhibit superior electrochemical performance as battery-type electrode materials for supercapacitors, outperforming bare NiCo 2 O 4 .</abstract><doi>10.1039/d4ra07808j</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier EISSN: 2046-2069
ispartof RSC advances, 2024-12, Vol.14 (54), p.487-497
issn 2046-2069
language
recordid cdi_rsc_primary_d4ra07808j
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; PubMed Central
title Hierarchical NiCoO@CuS composite electrode with enhanced surface area for high-performance hybrid supercapacitors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A06%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchical%20NiCoO@CuS%20composite%20electrode%20with%20enhanced%20surface%20area%20for%20high-performance%20hybrid%20supercapacitors&rft.jtitle=RSC%20advances&rft.au=Muralee%20Gopi,%20Chandu%20V.%20V&rft.date=2024-12-23&rft.volume=14&rft.issue=54&rft.spage=487&rft.epage=497&rft.pages=487-497&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d4ra07808j&rft_dat=%3Crsc%3Ed4ra07808j%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true