Assessment of wafer scale MoS atomic layers grown by metal-organic chemical vapor deposition using organo-metal, organo-sulfide, and HS precursors

Transition Metal Dichalcogenides (TMDs) are a unique class of materials that exhibit attractive electrical and optical properties which have generated significant interest for applications in microelectronics, optoelectronics, energy storage, and sensing. Considering the potential of these materials...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2024-07, Vol.14 (31), p.22618-22626
Hauptverfasser: Curtis, Michael, Maryon, Olivia, McKibben, Nicholas, Eixenberger, Josh, Chen, Chen, Chinnathambi, Karthik, Pasko, Sergej, El Kazzi, Salim, Redwing, Joan M, Estrada, David
Format: Artikel
Sprache:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22626
container_issue 31
container_start_page 22618
container_title RSC advances
container_volume 14
creator Curtis, Michael
Maryon, Olivia
McKibben, Nicholas
Eixenberger, Josh
Chen, Chen
Chinnathambi, Karthik
Pasko, Sergej
El Kazzi, Salim
Redwing, Joan M
Estrada, David
description Transition Metal Dichalcogenides (TMDs) are a unique class of materials that exhibit attractive electrical and optical properties which have generated significant interest for applications in microelectronics, optoelectronics, energy storage, and sensing. Considering the potential of these materials to impact such applications, it is crucial to develop a reliable and scalable synthesis process that is compatible with modern industrial manufacturing methods. Metal-organic chemical vapor deposition (MOCVD) offers an ideal solution to produce TMDs, due to its compatibility with large-scale production, precise layer control, and high material purity. Optimization of MOCVD protocols is necessary for effective TMD synthesis and integration into mainstream technologies. Additionally, improvements in metrology are necessary to measure the quality of the fabricated samples more accurately. In this work, we study MOCVD of wafer-scale molybdenum disulfide (MoS 2 ) utilizing two common chalcogen precursors, H 2 S and DTBS. We then develop a metrology platform for wafer scale samples quality assessment. For this, the coalesced films were characterized using Raman spectroscopy, atomic force microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and Kelvin probe force microscopy. We then correlate the structural analysis of these grown films with electrical performance by using aerosol jet printing to fabricate van der Pauw test structures and assess sheet resistance. Wafer scale transition metal dichalcogenide films grown by MOCVD using two different chalcogen precursors are assessed for layer homogeneity and quality. These characteristics are then compared to electrical properties on the growth substrate.
doi_str_mv 10.1039/d4ra04279d
format Article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_d4ra04279d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d4ra04279d</sourcerecordid><originalsourceid>FETCH-rsc_primary_d4ra04279d3</originalsourceid><addsrcrecordid>eNqFj0FLw0AQhRdBaNFevAvzAxrdpDGSo4jSi6f2XsbdSbqy2QkziSV_w19sKIpH3-Xx-N47PGNucnuX201970tBWxaPtb8wy8KWVVbYql6YleqHnVU95EWVL83XkyqpdpQG4AZO2JCAOowEb7wDHLgLDiJOJAqt8CnB-wQdDRgzlhbTTN2R5hJG-MSeBTz1rGEInGDUkFo49zg7j9a_ScfYBE9rwORhu4NeyI2iLHptLhuMSqsfvzK3ry_7520m6g69hA5lOvz92_zHvwEzqFhc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Assessment of wafer scale MoS atomic layers grown by metal-organic chemical vapor deposition using organo-metal, organo-sulfide, and HS precursors</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><creator>Curtis, Michael ; Maryon, Olivia ; McKibben, Nicholas ; Eixenberger, Josh ; Chen, Chen ; Chinnathambi, Karthik ; Pasko, Sergej ; El Kazzi, Salim ; Redwing, Joan M ; Estrada, David</creator><creatorcontrib>Curtis, Michael ; Maryon, Olivia ; McKibben, Nicholas ; Eixenberger, Josh ; Chen, Chen ; Chinnathambi, Karthik ; Pasko, Sergej ; El Kazzi, Salim ; Redwing, Joan M ; Estrada, David</creatorcontrib><description>Transition Metal Dichalcogenides (TMDs) are a unique class of materials that exhibit attractive electrical and optical properties which have generated significant interest for applications in microelectronics, optoelectronics, energy storage, and sensing. Considering the potential of these materials to impact such applications, it is crucial to develop a reliable and scalable synthesis process that is compatible with modern industrial manufacturing methods. Metal-organic chemical vapor deposition (MOCVD) offers an ideal solution to produce TMDs, due to its compatibility with large-scale production, precise layer control, and high material purity. Optimization of MOCVD protocols is necessary for effective TMD synthesis and integration into mainstream technologies. Additionally, improvements in metrology are necessary to measure the quality of the fabricated samples more accurately. In this work, we study MOCVD of wafer-scale molybdenum disulfide (MoS 2 ) utilizing two common chalcogen precursors, H 2 S and DTBS. We then develop a metrology platform for wafer scale samples quality assessment. For this, the coalesced films were characterized using Raman spectroscopy, atomic force microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and Kelvin probe force microscopy. We then correlate the structural analysis of these grown films with electrical performance by using aerosol jet printing to fabricate van der Pauw test structures and assess sheet resistance. Wafer scale transition metal dichalcogenide films grown by MOCVD using two different chalcogen precursors are assessed for layer homogeneity and quality. These characteristics are then compared to electrical properties on the growth substrate.</description><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d4ra04279d</identifier><ispartof>RSC advances, 2024-07, Vol.14 (31), p.22618-22626</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,862,27911,27912</link.rule.ids></links><search><creatorcontrib>Curtis, Michael</creatorcontrib><creatorcontrib>Maryon, Olivia</creatorcontrib><creatorcontrib>McKibben, Nicholas</creatorcontrib><creatorcontrib>Eixenberger, Josh</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Chinnathambi, Karthik</creatorcontrib><creatorcontrib>Pasko, Sergej</creatorcontrib><creatorcontrib>El Kazzi, Salim</creatorcontrib><creatorcontrib>Redwing, Joan M</creatorcontrib><creatorcontrib>Estrada, David</creatorcontrib><title>Assessment of wafer scale MoS atomic layers grown by metal-organic chemical vapor deposition using organo-metal, organo-sulfide, and HS precursors</title><title>RSC advances</title><description>Transition Metal Dichalcogenides (TMDs) are a unique class of materials that exhibit attractive electrical and optical properties which have generated significant interest for applications in microelectronics, optoelectronics, energy storage, and sensing. Considering the potential of these materials to impact such applications, it is crucial to develop a reliable and scalable synthesis process that is compatible with modern industrial manufacturing methods. Metal-organic chemical vapor deposition (MOCVD) offers an ideal solution to produce TMDs, due to its compatibility with large-scale production, precise layer control, and high material purity. Optimization of MOCVD protocols is necessary for effective TMD synthesis and integration into mainstream technologies. Additionally, improvements in metrology are necessary to measure the quality of the fabricated samples more accurately. In this work, we study MOCVD of wafer-scale molybdenum disulfide (MoS 2 ) utilizing two common chalcogen precursors, H 2 S and DTBS. We then develop a metrology platform for wafer scale samples quality assessment. For this, the coalesced films were characterized using Raman spectroscopy, atomic force microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and Kelvin probe force microscopy. We then correlate the structural analysis of these grown films with electrical performance by using aerosol jet printing to fabricate van der Pauw test structures and assess sheet resistance. Wafer scale transition metal dichalcogenide films grown by MOCVD using two different chalcogen precursors are assessed for layer homogeneity and quality. These characteristics are then compared to electrical properties on the growth substrate.</description><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFj0FLw0AQhRdBaNFevAvzAxrdpDGSo4jSi6f2XsbdSbqy2QkziSV_w19sKIpH3-Xx-N47PGNucnuX201970tBWxaPtb8wy8KWVVbYql6YleqHnVU95EWVL83XkyqpdpQG4AZO2JCAOowEb7wDHLgLDiJOJAqt8CnB-wQdDRgzlhbTTN2R5hJG-MSeBTz1rGEInGDUkFo49zg7j9a_ScfYBE9rwORhu4NeyI2iLHptLhuMSqsfvzK3ry_7520m6g69hA5lOvz92_zHvwEzqFhc</recordid><startdate>20240718</startdate><enddate>20240718</enddate><creator>Curtis, Michael</creator><creator>Maryon, Olivia</creator><creator>McKibben, Nicholas</creator><creator>Eixenberger, Josh</creator><creator>Chen, Chen</creator><creator>Chinnathambi, Karthik</creator><creator>Pasko, Sergej</creator><creator>El Kazzi, Salim</creator><creator>Redwing, Joan M</creator><creator>Estrada, David</creator><scope/></search><sort><creationdate>20240718</creationdate><title>Assessment of wafer scale MoS atomic layers grown by metal-organic chemical vapor deposition using organo-metal, organo-sulfide, and HS precursors</title><author>Curtis, Michael ; Maryon, Olivia ; McKibben, Nicholas ; Eixenberger, Josh ; Chen, Chen ; Chinnathambi, Karthik ; Pasko, Sergej ; El Kazzi, Salim ; Redwing, Joan M ; Estrada, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_d4ra04279d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Curtis, Michael</creatorcontrib><creatorcontrib>Maryon, Olivia</creatorcontrib><creatorcontrib>McKibben, Nicholas</creatorcontrib><creatorcontrib>Eixenberger, Josh</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Chinnathambi, Karthik</creatorcontrib><creatorcontrib>Pasko, Sergej</creatorcontrib><creatorcontrib>El Kazzi, Salim</creatorcontrib><creatorcontrib>Redwing, Joan M</creatorcontrib><creatorcontrib>Estrada, David</creatorcontrib><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Curtis, Michael</au><au>Maryon, Olivia</au><au>McKibben, Nicholas</au><au>Eixenberger, Josh</au><au>Chen, Chen</au><au>Chinnathambi, Karthik</au><au>Pasko, Sergej</au><au>El Kazzi, Salim</au><au>Redwing, Joan M</au><au>Estrada, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of wafer scale MoS atomic layers grown by metal-organic chemical vapor deposition using organo-metal, organo-sulfide, and HS precursors</atitle><jtitle>RSC advances</jtitle><date>2024-07-18</date><risdate>2024</risdate><volume>14</volume><issue>31</issue><spage>22618</spage><epage>22626</epage><pages>22618-22626</pages><eissn>2046-2069</eissn><abstract>Transition Metal Dichalcogenides (TMDs) are a unique class of materials that exhibit attractive electrical and optical properties which have generated significant interest for applications in microelectronics, optoelectronics, energy storage, and sensing. Considering the potential of these materials to impact such applications, it is crucial to develop a reliable and scalable synthesis process that is compatible with modern industrial manufacturing methods. Metal-organic chemical vapor deposition (MOCVD) offers an ideal solution to produce TMDs, due to its compatibility with large-scale production, precise layer control, and high material purity. Optimization of MOCVD protocols is necessary for effective TMD synthesis and integration into mainstream technologies. Additionally, improvements in metrology are necessary to measure the quality of the fabricated samples more accurately. In this work, we study MOCVD of wafer-scale molybdenum disulfide (MoS 2 ) utilizing two common chalcogen precursors, H 2 S and DTBS. We then develop a metrology platform for wafer scale samples quality assessment. For this, the coalesced films were characterized using Raman spectroscopy, atomic force microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and Kelvin probe force microscopy. We then correlate the structural analysis of these grown films with electrical performance by using aerosol jet printing to fabricate van der Pauw test structures and assess sheet resistance. Wafer scale transition metal dichalcogenide films grown by MOCVD using two different chalcogen precursors are assessed for layer homogeneity and quality. These characteristics are then compared to electrical properties on the growth substrate.</abstract><doi>10.1039/d4ra04279d</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier EISSN: 2046-2069
ispartof RSC advances, 2024-07, Vol.14 (31), p.22618-22626
issn 2046-2069
language
recordid cdi_rsc_primary_d4ra04279d
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; PubMed Central
title Assessment of wafer scale MoS atomic layers grown by metal-organic chemical vapor deposition using organo-metal, organo-sulfide, and HS precursors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T13%3A26%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20wafer%20scale%20MoS%20atomic%20layers%20grown%20by%20metal-organic%20chemical%20vapor%20deposition%20using%20organo-metal,%20organo-sulfide,%20and%20HS%20precursors&rft.jtitle=RSC%20advances&rft.au=Curtis,%20Michael&rft.date=2024-07-18&rft.volume=14&rft.issue=31&rft.spage=22618&rft.epage=22626&rft.pages=22618-22626&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d4ra04279d&rft_dat=%3Crsc%3Ed4ra04279d%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true