Assessment of wafer scale MoS atomic layers grown by metal-organic chemical vapor deposition using organo-metal, organo-sulfide, and HS precursors
Transition Metal Dichalcogenides (TMDs) are a unique class of materials that exhibit attractive electrical and optical properties which have generated significant interest for applications in microelectronics, optoelectronics, energy storage, and sensing. Considering the potential of these materials...
Gespeichert in:
Veröffentlicht in: | RSC advances 2024-07, Vol.14 (31), p.22618-22626 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 22626 |
---|---|
container_issue | 31 |
container_start_page | 22618 |
container_title | RSC advances |
container_volume | 14 |
creator | Curtis, Michael Maryon, Olivia McKibben, Nicholas Eixenberger, Josh Chen, Chen Chinnathambi, Karthik Pasko, Sergej El Kazzi, Salim Redwing, Joan M Estrada, David |
description | Transition Metal Dichalcogenides (TMDs) are a unique class of materials that exhibit attractive electrical and optical properties which have generated significant interest for applications in microelectronics, optoelectronics, energy storage, and sensing. Considering the potential of these materials to impact such applications, it is crucial to develop a reliable and scalable synthesis process that is compatible with modern industrial manufacturing methods. Metal-organic chemical vapor deposition (MOCVD) offers an ideal solution to produce TMDs, due to its compatibility with large-scale production, precise layer control, and high material purity. Optimization of MOCVD protocols is necessary for effective TMD synthesis and integration into mainstream technologies. Additionally, improvements in metrology are necessary to measure the quality of the fabricated samples more accurately. In this work, we study MOCVD of wafer-scale molybdenum disulfide (MoS
2
) utilizing two common chalcogen precursors, H
2
S and DTBS. We then develop a metrology platform for wafer scale samples quality assessment. For this, the coalesced films were characterized using Raman spectroscopy, atomic force microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and Kelvin probe force microscopy. We then correlate the structural analysis of these grown films with electrical performance by using aerosol jet printing to fabricate van der Pauw test structures and assess sheet resistance.
Wafer scale transition metal dichalcogenide films grown by MOCVD using two different chalcogen precursors are assessed for layer homogeneity and quality. These characteristics are then compared to electrical properties on the growth substrate. |
doi_str_mv | 10.1039/d4ra04279d |
format | Article |
fullrecord | <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_d4ra04279d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d4ra04279d</sourcerecordid><originalsourceid>FETCH-rsc_primary_d4ra04279d3</originalsourceid><addsrcrecordid>eNqFj0FLw0AQhRdBaNFevAvzAxrdpDGSo4jSi6f2XsbdSbqy2QkziSV_w19sKIpH3-Xx-N47PGNucnuX201970tBWxaPtb8wy8KWVVbYql6YleqHnVU95EWVL83XkyqpdpQG4AZO2JCAOowEb7wDHLgLDiJOJAqt8CnB-wQdDRgzlhbTTN2R5hJG-MSeBTz1rGEInGDUkFo49zg7j9a_ScfYBE9rwORhu4NeyI2iLHptLhuMSqsfvzK3ry_7520m6g69hA5lOvz92_zHvwEzqFhc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Assessment of wafer scale MoS atomic layers grown by metal-organic chemical vapor deposition using organo-metal, organo-sulfide, and HS precursors</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><creator>Curtis, Michael ; Maryon, Olivia ; McKibben, Nicholas ; Eixenberger, Josh ; Chen, Chen ; Chinnathambi, Karthik ; Pasko, Sergej ; El Kazzi, Salim ; Redwing, Joan M ; Estrada, David</creator><creatorcontrib>Curtis, Michael ; Maryon, Olivia ; McKibben, Nicholas ; Eixenberger, Josh ; Chen, Chen ; Chinnathambi, Karthik ; Pasko, Sergej ; El Kazzi, Salim ; Redwing, Joan M ; Estrada, David</creatorcontrib><description>Transition Metal Dichalcogenides (TMDs) are a unique class of materials that exhibit attractive electrical and optical properties which have generated significant interest for applications in microelectronics, optoelectronics, energy storage, and sensing. Considering the potential of these materials to impact such applications, it is crucial to develop a reliable and scalable synthesis process that is compatible with modern industrial manufacturing methods. Metal-organic chemical vapor deposition (MOCVD) offers an ideal solution to produce TMDs, due to its compatibility with large-scale production, precise layer control, and high material purity. Optimization of MOCVD protocols is necessary for effective TMD synthesis and integration into mainstream technologies. Additionally, improvements in metrology are necessary to measure the quality of the fabricated samples more accurately. In this work, we study MOCVD of wafer-scale molybdenum disulfide (MoS
2
) utilizing two common chalcogen precursors, H
2
S and DTBS. We then develop a metrology platform for wafer scale samples quality assessment. For this, the coalesced films were characterized using Raman spectroscopy, atomic force microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and Kelvin probe force microscopy. We then correlate the structural analysis of these grown films with electrical performance by using aerosol jet printing to fabricate van der Pauw test structures and assess sheet resistance.
Wafer scale transition metal dichalcogenide films grown by MOCVD using two different chalcogen precursors are assessed for layer homogeneity and quality. These characteristics are then compared to electrical properties on the growth substrate.</description><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d4ra04279d</identifier><ispartof>RSC advances, 2024-07, Vol.14 (31), p.22618-22626</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,862,27911,27912</link.rule.ids></links><search><creatorcontrib>Curtis, Michael</creatorcontrib><creatorcontrib>Maryon, Olivia</creatorcontrib><creatorcontrib>McKibben, Nicholas</creatorcontrib><creatorcontrib>Eixenberger, Josh</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Chinnathambi, Karthik</creatorcontrib><creatorcontrib>Pasko, Sergej</creatorcontrib><creatorcontrib>El Kazzi, Salim</creatorcontrib><creatorcontrib>Redwing, Joan M</creatorcontrib><creatorcontrib>Estrada, David</creatorcontrib><title>Assessment of wafer scale MoS atomic layers grown by metal-organic chemical vapor deposition using organo-metal, organo-sulfide, and HS precursors</title><title>RSC advances</title><description>Transition Metal Dichalcogenides (TMDs) are a unique class of materials that exhibit attractive electrical and optical properties which have generated significant interest for applications in microelectronics, optoelectronics, energy storage, and sensing. Considering the potential of these materials to impact such applications, it is crucial to develop a reliable and scalable synthesis process that is compatible with modern industrial manufacturing methods. Metal-organic chemical vapor deposition (MOCVD) offers an ideal solution to produce TMDs, due to its compatibility with large-scale production, precise layer control, and high material purity. Optimization of MOCVD protocols is necessary for effective TMD synthesis and integration into mainstream technologies. Additionally, improvements in metrology are necessary to measure the quality of the fabricated samples more accurately. In this work, we study MOCVD of wafer-scale molybdenum disulfide (MoS
2
) utilizing two common chalcogen precursors, H
2
S and DTBS. We then develop a metrology platform for wafer scale samples quality assessment. For this, the coalesced films were characterized using Raman spectroscopy, atomic force microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and Kelvin probe force microscopy. We then correlate the structural analysis of these grown films with electrical performance by using aerosol jet printing to fabricate van der Pauw test structures and assess sheet resistance.
Wafer scale transition metal dichalcogenide films grown by MOCVD using two different chalcogen precursors are assessed for layer homogeneity and quality. These characteristics are then compared to electrical properties on the growth substrate.</description><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFj0FLw0AQhRdBaNFevAvzAxrdpDGSo4jSi6f2XsbdSbqy2QkziSV_w19sKIpH3-Xx-N47PGNucnuX201970tBWxaPtb8wy8KWVVbYql6YleqHnVU95EWVL83XkyqpdpQG4AZO2JCAOowEb7wDHLgLDiJOJAqt8CnB-wQdDRgzlhbTTN2R5hJG-MSeBTz1rGEInGDUkFo49zg7j9a_ScfYBE9rwORhu4NeyI2iLHptLhuMSqsfvzK3ry_7520m6g69hA5lOvz92_zHvwEzqFhc</recordid><startdate>20240718</startdate><enddate>20240718</enddate><creator>Curtis, Michael</creator><creator>Maryon, Olivia</creator><creator>McKibben, Nicholas</creator><creator>Eixenberger, Josh</creator><creator>Chen, Chen</creator><creator>Chinnathambi, Karthik</creator><creator>Pasko, Sergej</creator><creator>El Kazzi, Salim</creator><creator>Redwing, Joan M</creator><creator>Estrada, David</creator><scope/></search><sort><creationdate>20240718</creationdate><title>Assessment of wafer scale MoS atomic layers grown by metal-organic chemical vapor deposition using organo-metal, organo-sulfide, and HS precursors</title><author>Curtis, Michael ; Maryon, Olivia ; McKibben, Nicholas ; Eixenberger, Josh ; Chen, Chen ; Chinnathambi, Karthik ; Pasko, Sergej ; El Kazzi, Salim ; Redwing, Joan M ; Estrada, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_d4ra04279d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Curtis, Michael</creatorcontrib><creatorcontrib>Maryon, Olivia</creatorcontrib><creatorcontrib>McKibben, Nicholas</creatorcontrib><creatorcontrib>Eixenberger, Josh</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Chinnathambi, Karthik</creatorcontrib><creatorcontrib>Pasko, Sergej</creatorcontrib><creatorcontrib>El Kazzi, Salim</creatorcontrib><creatorcontrib>Redwing, Joan M</creatorcontrib><creatorcontrib>Estrada, David</creatorcontrib><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Curtis, Michael</au><au>Maryon, Olivia</au><au>McKibben, Nicholas</au><au>Eixenberger, Josh</au><au>Chen, Chen</au><au>Chinnathambi, Karthik</au><au>Pasko, Sergej</au><au>El Kazzi, Salim</au><au>Redwing, Joan M</au><au>Estrada, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of wafer scale MoS atomic layers grown by metal-organic chemical vapor deposition using organo-metal, organo-sulfide, and HS precursors</atitle><jtitle>RSC advances</jtitle><date>2024-07-18</date><risdate>2024</risdate><volume>14</volume><issue>31</issue><spage>22618</spage><epage>22626</epage><pages>22618-22626</pages><eissn>2046-2069</eissn><abstract>Transition Metal Dichalcogenides (TMDs) are a unique class of materials that exhibit attractive electrical and optical properties which have generated significant interest for applications in microelectronics, optoelectronics, energy storage, and sensing. Considering the potential of these materials to impact such applications, it is crucial to develop a reliable and scalable synthesis process that is compatible with modern industrial manufacturing methods. Metal-organic chemical vapor deposition (MOCVD) offers an ideal solution to produce TMDs, due to its compatibility with large-scale production, precise layer control, and high material purity. Optimization of MOCVD protocols is necessary for effective TMD synthesis and integration into mainstream technologies. Additionally, improvements in metrology are necessary to measure the quality of the fabricated samples more accurately. In this work, we study MOCVD of wafer-scale molybdenum disulfide (MoS
2
) utilizing two common chalcogen precursors, H
2
S and DTBS. We then develop a metrology platform for wafer scale samples quality assessment. For this, the coalesced films were characterized using Raman spectroscopy, atomic force microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and Kelvin probe force microscopy. We then correlate the structural analysis of these grown films with electrical performance by using aerosol jet printing to fabricate van der Pauw test structures and assess sheet resistance.
Wafer scale transition metal dichalcogenide films grown by MOCVD using two different chalcogen precursors are assessed for layer homogeneity and quality. These characteristics are then compared to electrical properties on the growth substrate.</abstract><doi>10.1039/d4ra04279d</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2046-2069 |
ispartof | RSC advances, 2024-07, Vol.14 (31), p.22618-22626 |
issn | 2046-2069 |
language | |
recordid | cdi_rsc_primary_d4ra04279d |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; PubMed Central |
title | Assessment of wafer scale MoS atomic layers grown by metal-organic chemical vapor deposition using organo-metal, organo-sulfide, and HS precursors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T13%3A26%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20wafer%20scale%20MoS%20atomic%20layers%20grown%20by%20metal-organic%20chemical%20vapor%20deposition%20using%20organo-metal,%20organo-sulfide,%20and%20HS%20precursors&rft.jtitle=RSC%20advances&rft.au=Curtis,%20Michael&rft.date=2024-07-18&rft.volume=14&rft.issue=31&rft.spage=22618&rft.epage=22626&rft.pages=22618-22626&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d4ra04279d&rft_dat=%3Crsc%3Ed4ra04279d%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |