Optimization of informative variables selection for quantitative analysis of heavy metal (Cu) contaminated using laser-induced breakdown spectroscopy

Laser-induced breakdown spectroscopy (LIBS) is an excellent technology for the rapid analysis of heavy metal (Cu) contaminated Tegillarca granosa . It is well known that LIBS typically contains thousands of wavelengths, but most of these signals are composed of background or irrelevant components th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of analytical atomic spectrometry 2024-10, Vol.39 (11), p.2824-2831
Hauptverfasser: Huang, Xudong, Chen, Xiaojing, Huang, Guangzao, Xie, Zhonghao, Shi, Wen, Ali, Shujat, Yuan, Leiming, Chen, Xi
Format: Artikel
Sprache:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2831
container_issue 11
container_start_page 2824
container_title Journal of analytical atomic spectrometry
container_volume 39
creator Huang, Xudong
Chen, Xiaojing
Huang, Guangzao
Xie, Zhonghao
Shi, Wen
Ali, Shujat
Yuan, Leiming
Chen, Xi
description Laser-induced breakdown spectroscopy (LIBS) is an excellent technology for the rapid analysis of heavy metal (Cu) contaminated Tegillarca granosa . It is well known that LIBS typically contains thousands of wavelengths, but most of these signals are composed of background or irrelevant components that lack desired information. In multivariate data analysis, these redundant signals affect the model's stability and accuracy. Therefore, a strategy is proposed to screen out variables that behave differently from the majority of variables by unsupervised kernel minimum regularized covariance determinant (KMRCD). The KMRCD algorithm with optimized parameters was used to select 50 variables from the LIBS spectra. The partial least squares model constructed with these 50 selected variables demonstrated good performance with a determination coefficient of prediction of 0.806 and a root mean square error of prediction of 16.496 mg kg −1 . The obtained results indicate that the unsupervised KMRCD method can effectively eliminate wavelengths that do not provide available metal information from complex LIBS more efficiently than general variable selection methods. This study provides a good reference for identifying informative variables and measuring other constituents in LIBS. The KMRCD algorithm successfully selected 50 informative variables from the 1520 variables in the LIBS spectra.
doi_str_mv 10.1039/d4ja00084f
format Article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_d4ja00084f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d4ja00084f</sourcerecordid><originalsourceid>FETCH-rsc_primary_d4ja00084f3</originalsourceid><addsrcrecordid>eNqFj7tOxDAQRS0EEuHR0CNNCUXA2Tgbtl6B6GjoV7OOA7P4ETxOUPgP_hfzkCipRnfOGY2uEGeVvKpkvbru1A6llDeq3xNFVS9V2TRK7YtCLpZtuVJteyiOmHfZUc2iKcTHw5DI0TsmCh5CD-T7EF2Ok4EJI-HWGgY21uhvJVN4HdEnSj8SerQzE38dPxucZnAmoYWL9XgJOviEjjwm08HI5J_AIptYku9GnXfbaPClC28eeMgfYmAdhvlEHPRo2Zz-zmNxfnf7uL4vI-vNEMlhnDd_Xev_-CfDUlw5</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimization of informative variables selection for quantitative analysis of heavy metal (Cu) contaminated using laser-induced breakdown spectroscopy</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Huang, Xudong ; Chen, Xiaojing ; Huang, Guangzao ; Xie, Zhonghao ; Shi, Wen ; Ali, Shujat ; Yuan, Leiming ; Chen, Xi</creator><creatorcontrib>Huang, Xudong ; Chen, Xiaojing ; Huang, Guangzao ; Xie, Zhonghao ; Shi, Wen ; Ali, Shujat ; Yuan, Leiming ; Chen, Xi</creatorcontrib><description>Laser-induced breakdown spectroscopy (LIBS) is an excellent technology for the rapid analysis of heavy metal (Cu) contaminated Tegillarca granosa . It is well known that LIBS typically contains thousands of wavelengths, but most of these signals are composed of background or irrelevant components that lack desired information. In multivariate data analysis, these redundant signals affect the model's stability and accuracy. Therefore, a strategy is proposed to screen out variables that behave differently from the majority of variables by unsupervised kernel minimum regularized covariance determinant (KMRCD). The KMRCD algorithm with optimized parameters was used to select 50 variables from the LIBS spectra. The partial least squares model constructed with these 50 selected variables demonstrated good performance with a determination coefficient of prediction of 0.806 and a root mean square error of prediction of 16.496 mg kg −1 . The obtained results indicate that the unsupervised KMRCD method can effectively eliminate wavelengths that do not provide available metal information from complex LIBS more efficiently than general variable selection methods. This study provides a good reference for identifying informative variables and measuring other constituents in LIBS. The KMRCD algorithm successfully selected 50 informative variables from the 1520 variables in the LIBS spectra.</description><identifier>ISSN: 0267-9477</identifier><identifier>EISSN: 1364-5544</identifier><identifier>DOI: 10.1039/d4ja00084f</identifier><ispartof>Journal of analytical atomic spectrometry, 2024-10, Vol.39 (11), p.2824-2831</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Huang, Xudong</creatorcontrib><creatorcontrib>Chen, Xiaojing</creatorcontrib><creatorcontrib>Huang, Guangzao</creatorcontrib><creatorcontrib>Xie, Zhonghao</creatorcontrib><creatorcontrib>Shi, Wen</creatorcontrib><creatorcontrib>Ali, Shujat</creatorcontrib><creatorcontrib>Yuan, Leiming</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><title>Optimization of informative variables selection for quantitative analysis of heavy metal (Cu) contaminated using laser-induced breakdown spectroscopy</title><title>Journal of analytical atomic spectrometry</title><description>Laser-induced breakdown spectroscopy (LIBS) is an excellent technology for the rapid analysis of heavy metal (Cu) contaminated Tegillarca granosa . It is well known that LIBS typically contains thousands of wavelengths, but most of these signals are composed of background or irrelevant components that lack desired information. In multivariate data analysis, these redundant signals affect the model's stability and accuracy. Therefore, a strategy is proposed to screen out variables that behave differently from the majority of variables by unsupervised kernel minimum regularized covariance determinant (KMRCD). The KMRCD algorithm with optimized parameters was used to select 50 variables from the LIBS spectra. The partial least squares model constructed with these 50 selected variables demonstrated good performance with a determination coefficient of prediction of 0.806 and a root mean square error of prediction of 16.496 mg kg −1 . The obtained results indicate that the unsupervised KMRCD method can effectively eliminate wavelengths that do not provide available metal information from complex LIBS more efficiently than general variable selection methods. This study provides a good reference for identifying informative variables and measuring other constituents in LIBS. The KMRCD algorithm successfully selected 50 informative variables from the 1520 variables in the LIBS spectra.</description><issn>0267-9477</issn><issn>1364-5544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFj7tOxDAQRS0EEuHR0CNNCUXA2Tgbtl6B6GjoV7OOA7P4ETxOUPgP_hfzkCipRnfOGY2uEGeVvKpkvbru1A6llDeq3xNFVS9V2TRK7YtCLpZtuVJteyiOmHfZUc2iKcTHw5DI0TsmCh5CD-T7EF2Ok4EJI-HWGgY21uhvJVN4HdEnSj8SerQzE38dPxucZnAmoYWL9XgJOviEjjwm08HI5J_AIptYku9GnXfbaPClC28eeMgfYmAdhvlEHPRo2Zz-zmNxfnf7uL4vI-vNEMlhnDd_Xev_-CfDUlw5</recordid><startdate>20241030</startdate><enddate>20241030</enddate><creator>Huang, Xudong</creator><creator>Chen, Xiaojing</creator><creator>Huang, Guangzao</creator><creator>Xie, Zhonghao</creator><creator>Shi, Wen</creator><creator>Ali, Shujat</creator><creator>Yuan, Leiming</creator><creator>Chen, Xi</creator><scope/></search><sort><creationdate>20241030</creationdate><title>Optimization of informative variables selection for quantitative analysis of heavy metal (Cu) contaminated using laser-induced breakdown spectroscopy</title><author>Huang, Xudong ; Chen, Xiaojing ; Huang, Guangzao ; Xie, Zhonghao ; Shi, Wen ; Ali, Shujat ; Yuan, Leiming ; Chen, Xi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_d4ja00084f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Xudong</creatorcontrib><creatorcontrib>Chen, Xiaojing</creatorcontrib><creatorcontrib>Huang, Guangzao</creatorcontrib><creatorcontrib>Xie, Zhonghao</creatorcontrib><creatorcontrib>Shi, Wen</creatorcontrib><creatorcontrib>Ali, Shujat</creatorcontrib><creatorcontrib>Yuan, Leiming</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><jtitle>Journal of analytical atomic spectrometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Xudong</au><au>Chen, Xiaojing</au><au>Huang, Guangzao</au><au>Xie, Zhonghao</au><au>Shi, Wen</au><au>Ali, Shujat</au><au>Yuan, Leiming</au><au>Chen, Xi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of informative variables selection for quantitative analysis of heavy metal (Cu) contaminated using laser-induced breakdown spectroscopy</atitle><jtitle>Journal of analytical atomic spectrometry</jtitle><date>2024-10-30</date><risdate>2024</risdate><volume>39</volume><issue>11</issue><spage>2824</spage><epage>2831</epage><pages>2824-2831</pages><issn>0267-9477</issn><eissn>1364-5544</eissn><abstract>Laser-induced breakdown spectroscopy (LIBS) is an excellent technology for the rapid analysis of heavy metal (Cu) contaminated Tegillarca granosa . It is well known that LIBS typically contains thousands of wavelengths, but most of these signals are composed of background or irrelevant components that lack desired information. In multivariate data analysis, these redundant signals affect the model's stability and accuracy. Therefore, a strategy is proposed to screen out variables that behave differently from the majority of variables by unsupervised kernel minimum regularized covariance determinant (KMRCD). The KMRCD algorithm with optimized parameters was used to select 50 variables from the LIBS spectra. The partial least squares model constructed with these 50 selected variables demonstrated good performance with a determination coefficient of prediction of 0.806 and a root mean square error of prediction of 16.496 mg kg −1 . The obtained results indicate that the unsupervised KMRCD method can effectively eliminate wavelengths that do not provide available metal information from complex LIBS more efficiently than general variable selection methods. This study provides a good reference for identifying informative variables and measuring other constituents in LIBS. The KMRCD algorithm successfully selected 50 informative variables from the 1520 variables in the LIBS spectra.</abstract><doi>10.1039/d4ja00084f</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0267-9477
ispartof Journal of analytical atomic spectrometry, 2024-10, Vol.39 (11), p.2824-2831
issn 0267-9477
1364-5544
language
recordid cdi_rsc_primary_d4ja00084f
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
title Optimization of informative variables selection for quantitative analysis of heavy metal (Cu) contaminated using laser-induced breakdown spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T16%3A42%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20informative%20variables%20selection%20for%20quantitative%20analysis%20of%20heavy%20metal%20(Cu)%20contaminated%20using%20laser-induced%20breakdown%20spectroscopy&rft.jtitle=Journal%20of%20analytical%20atomic%20spectrometry&rft.au=Huang,%20Xudong&rft.date=2024-10-30&rft.volume=39&rft.issue=11&rft.spage=2824&rft.epage=2831&rft.pages=2824-2831&rft.issn=0267-9477&rft.eissn=1364-5544&rft_id=info:doi/10.1039/d4ja00084f&rft_dat=%3Crsc%3Ed4ja00084f%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true