The effects of polyolefin structure and source on pyrolysis-derived plastic oil composition
Seven types of plastics were pyrolyzed in a fluidized bed reactor: post-consumer recycled (PCR) high-density polyethylene (HDPE), PCR polypropylene (PP), HDPE virgin resins with two different molecular weights, virgin resins of low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE)...
Gespeichert in:
Veröffentlicht in: | Green chemistry : an international journal and green chemistry resource : GC 2024-12, Vol.26 (24), p.1198-11923 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11923 |
---|---|
container_issue | 24 |
container_start_page | 1198 |
container_title | Green chemistry : an international journal and green chemistry resource : GC |
container_volume | 26 |
creator | Wu, Jiayang Jiang, Zhen Cecon, Victor S Curtzwiler, Greg Vorst, Keith Mavrikakis, Manos Huber, George W |
description | Seven types of plastics were pyrolyzed in a fluidized bed reactor: post-consumer recycled (PCR) high-density polyethylene (HDPE), PCR polypropylene (PP), HDPE virgin resins with two different molecular weights, virgin resins of low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), and PP. Pyrolysis produced non-condensable gases (C1-C3), liquid phase products (C4-C40), and solids (C40+ and chars), with alkane, alkene, alkadiene, aromatic, and multi-cycloaromatics as the predominant compounds. The polymer structure had the greatest impact on product distribution, with minimal influence from molecular weight. Branches in polyethylene (PE) acted as thermal defects initiating degradation. Higher branch density in PE led to increased concentrations of aromatics, branched alkanes, and internal alkenes. PP and PE exhibited distinct degradation mechanisms, with PP requiring less energy for decomposition and yielding more oil. Pyrolysis oil from PCR HDPE and PCR PP contained a higher proportion of branched compounds. Additives in PCR plastics may promote isomerization during pyrolysis.
Seven types of plastics, from varied structures and sources, were pyrolyzed in a fluidized bed reactor. The resulting oils were analyzed by GC×GC, NMR, and ICP, while theory and experiments were combined to explore the degradation mechanism. |
doi_str_mv | 10.1039/d4gc04029e |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d4gc04029e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3142182807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c197t-3e8a112f7bc37d5b11d24fee05b35239d11212f326a418d3b25a2ed21b92bcff3</originalsourceid><addsrcrecordid>eNpFkc1LAzEQxYMoWKsX70LQm7Car93tHqXWKhS81JOHsJtMbMp2syZZof-90ZV6moH3Y3jvDUKXlNxRwqt7LT4UEYRVcIQmVBQ8q1hJjg97wU7RWQhbQigtCzFB7-sNYDAGVAzYGdy7du9aMLbDIfpBxcEDrjuNgxu8Auw63O99goINmQZvv0Djvq1DtAo722Lldr0LNlrXnaMTU7cBLv7mFL09Ldbz52z1unyZP6wyRasyZhxmNaXMlI3ipc4bSjUTBoDkDc8Zr3QSk8xZUQs607xhec1AM9pUrFHG8Cm6Hu-65EIGZSOojXJdl0JJJsq8EDRBNyPUe_c5QIhymxJ1yZfkVDA6YzNSJup2pJR3IXgwsvd2V_u9pET-NCwfxXL-2_AiwVcj7IM6cP8f4N_YoHhw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3142182807</pqid></control><display><type>article</type><title>The effects of polyolefin structure and source on pyrolysis-derived plastic oil composition</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Wu, Jiayang ; Jiang, Zhen ; Cecon, Victor S ; Curtzwiler, Greg ; Vorst, Keith ; Mavrikakis, Manos ; Huber, George W</creator><creatorcontrib>Wu, Jiayang ; Jiang, Zhen ; Cecon, Victor S ; Curtzwiler, Greg ; Vorst, Keith ; Mavrikakis, Manos ; Huber, George W ; University of Wisconsin-Madison, WI (United States)</creatorcontrib><description>Seven types of plastics were pyrolyzed in a fluidized bed reactor: post-consumer recycled (PCR) high-density polyethylene (HDPE), PCR polypropylene (PP), HDPE virgin resins with two different molecular weights, virgin resins of low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), and PP. Pyrolysis produced non-condensable gases (C1-C3), liquid phase products (C4-C40), and solids (C40+ and chars), with alkane, alkene, alkadiene, aromatic, and multi-cycloaromatics as the predominant compounds. The polymer structure had the greatest impact on product distribution, with minimal influence from molecular weight. Branches in polyethylene (PE) acted as thermal defects initiating degradation. Higher branch density in PE led to increased concentrations of aromatics, branched alkanes, and internal alkenes. PP and PE exhibited distinct degradation mechanisms, with PP requiring less energy for decomposition and yielding more oil. Pyrolysis oil from PCR HDPE and PCR PP contained a higher proportion of branched compounds. Additives in PCR plastics may promote isomerization during pyrolysis.
Seven types of plastics, from varied structures and sources, were pyrolyzed in a fluidized bed reactor. The resulting oils were analyzed by GC×GC, NMR, and ICP, while theory and experiments were combined to explore the degradation mechanism.</description><identifier>ISSN: 1463-9262</identifier><identifier>EISSN: 1463-9270</identifier><identifier>DOI: 10.1039/d4gc04029e</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Alkanes ; Alkenes ; Aromatic compounds ; Composition effects ; Degradation ; Fluidized beds ; High density polyethylenes ; Isomerization ; Liquid phases ; Low density polyethylenes ; Molecular structure ; Molecular weight ; Molecular weight distribution ; Oils & fats ; Plastics ; Polyethylene ; Polymerase chain reaction ; Polymers ; Polyolefins ; Polypropylene ; Pyrolysis ; Resins</subject><ispartof>Green chemistry : an international journal and green chemistry resource : GC, 2024-12, Vol.26 (24), p.1198-11923</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c197t-3e8a112f7bc37d5b11d24fee05b35239d11212f326a418d3b25a2ed21b92bcff3</cites><orcidid>0000-0002-7838-6893 ; 0000-0001-6321-2711 ; 0000-0002-1175-5658 ; 0000-0002-4300-7937 ; 0000-0002-5293-5356</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27907,27908</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2475641$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Jiayang</creatorcontrib><creatorcontrib>Jiang, Zhen</creatorcontrib><creatorcontrib>Cecon, Victor S</creatorcontrib><creatorcontrib>Curtzwiler, Greg</creatorcontrib><creatorcontrib>Vorst, Keith</creatorcontrib><creatorcontrib>Mavrikakis, Manos</creatorcontrib><creatorcontrib>Huber, George W</creatorcontrib><creatorcontrib>University of Wisconsin-Madison, WI (United States)</creatorcontrib><title>The effects of polyolefin structure and source on pyrolysis-derived plastic oil composition</title><title>Green chemistry : an international journal and green chemistry resource : GC</title><description>Seven types of plastics were pyrolyzed in a fluidized bed reactor: post-consumer recycled (PCR) high-density polyethylene (HDPE), PCR polypropylene (PP), HDPE virgin resins with two different molecular weights, virgin resins of low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), and PP. Pyrolysis produced non-condensable gases (C1-C3), liquid phase products (C4-C40), and solids (C40+ and chars), with alkane, alkene, alkadiene, aromatic, and multi-cycloaromatics as the predominant compounds. The polymer structure had the greatest impact on product distribution, with minimal influence from molecular weight. Branches in polyethylene (PE) acted as thermal defects initiating degradation. Higher branch density in PE led to increased concentrations of aromatics, branched alkanes, and internal alkenes. PP and PE exhibited distinct degradation mechanisms, with PP requiring less energy for decomposition and yielding more oil. Pyrolysis oil from PCR HDPE and PCR PP contained a higher proportion of branched compounds. Additives in PCR plastics may promote isomerization during pyrolysis.
Seven types of plastics, from varied structures and sources, were pyrolyzed in a fluidized bed reactor. The resulting oils were analyzed by GC×GC, NMR, and ICP, while theory and experiments were combined to explore the degradation mechanism.</description><subject>Alkanes</subject><subject>Alkenes</subject><subject>Aromatic compounds</subject><subject>Composition effects</subject><subject>Degradation</subject><subject>Fluidized beds</subject><subject>High density polyethylenes</subject><subject>Isomerization</subject><subject>Liquid phases</subject><subject>Low density polyethylenes</subject><subject>Molecular structure</subject><subject>Molecular weight</subject><subject>Molecular weight distribution</subject><subject>Oils & fats</subject><subject>Plastics</subject><subject>Polyethylene</subject><subject>Polymerase chain reaction</subject><subject>Polymers</subject><subject>Polyolefins</subject><subject>Polypropylene</subject><subject>Pyrolysis</subject><subject>Resins</subject><issn>1463-9262</issn><issn>1463-9270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkc1LAzEQxYMoWKsX70LQm7Car93tHqXWKhS81JOHsJtMbMp2syZZof-90ZV6moH3Y3jvDUKXlNxRwqt7LT4UEYRVcIQmVBQ8q1hJjg97wU7RWQhbQigtCzFB7-sNYDAGVAzYGdy7du9aMLbDIfpBxcEDrjuNgxu8Auw63O99goINmQZvv0Djvq1DtAo722Lldr0LNlrXnaMTU7cBLv7mFL09Ldbz52z1unyZP6wyRasyZhxmNaXMlI3ipc4bSjUTBoDkDc8Zr3QSk8xZUQs607xhec1AM9pUrFHG8Cm6Hu-65EIGZSOojXJdl0JJJsq8EDRBNyPUe_c5QIhymxJ1yZfkVDA6YzNSJup2pJR3IXgwsvd2V_u9pET-NCwfxXL-2_AiwVcj7IM6cP8f4N_YoHhw</recordid><startdate>20241209</startdate><enddate>20241209</enddate><creator>Wu, Jiayang</creator><creator>Jiang, Zhen</creator><creator>Cecon, Victor S</creator><creator>Curtzwiler, Greg</creator><creator>Vorst, Keith</creator><creator>Mavrikakis, Manos</creator><creator>Huber, George W</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U6</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7838-6893</orcidid><orcidid>https://orcid.org/0000-0001-6321-2711</orcidid><orcidid>https://orcid.org/0000-0002-1175-5658</orcidid><orcidid>https://orcid.org/0000-0002-4300-7937</orcidid><orcidid>https://orcid.org/0000-0002-5293-5356</orcidid></search><sort><creationdate>20241209</creationdate><title>The effects of polyolefin structure and source on pyrolysis-derived plastic oil composition</title><author>Wu, Jiayang ; Jiang, Zhen ; Cecon, Victor S ; Curtzwiler, Greg ; Vorst, Keith ; Mavrikakis, Manos ; Huber, George W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c197t-3e8a112f7bc37d5b11d24fee05b35239d11212f326a418d3b25a2ed21b92bcff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alkanes</topic><topic>Alkenes</topic><topic>Aromatic compounds</topic><topic>Composition effects</topic><topic>Degradation</topic><topic>Fluidized beds</topic><topic>High density polyethylenes</topic><topic>Isomerization</topic><topic>Liquid phases</topic><topic>Low density polyethylenes</topic><topic>Molecular structure</topic><topic>Molecular weight</topic><topic>Molecular weight distribution</topic><topic>Oils & fats</topic><topic>Plastics</topic><topic>Polyethylene</topic><topic>Polymerase chain reaction</topic><topic>Polymers</topic><topic>Polyolefins</topic><topic>Polypropylene</topic><topic>Pyrolysis</topic><topic>Resins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Jiayang</creatorcontrib><creatorcontrib>Jiang, Zhen</creatorcontrib><creatorcontrib>Cecon, Victor S</creatorcontrib><creatorcontrib>Curtzwiler, Greg</creatorcontrib><creatorcontrib>Vorst, Keith</creatorcontrib><creatorcontrib>Mavrikakis, Manos</creatorcontrib><creatorcontrib>Huber, George W</creatorcontrib><creatorcontrib>University of Wisconsin-Madison, WI (United States)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Jiayang</au><au>Jiang, Zhen</au><au>Cecon, Victor S</au><au>Curtzwiler, Greg</au><au>Vorst, Keith</au><au>Mavrikakis, Manos</au><au>Huber, George W</au><aucorp>University of Wisconsin-Madison, WI (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effects of polyolefin structure and source on pyrolysis-derived plastic oil composition</atitle><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle><date>2024-12-09</date><risdate>2024</risdate><volume>26</volume><issue>24</issue><spage>1198</spage><epage>11923</epage><pages>1198-11923</pages><issn>1463-9262</issn><eissn>1463-9270</eissn><abstract>Seven types of plastics were pyrolyzed in a fluidized bed reactor: post-consumer recycled (PCR) high-density polyethylene (HDPE), PCR polypropylene (PP), HDPE virgin resins with two different molecular weights, virgin resins of low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), and PP. Pyrolysis produced non-condensable gases (C1-C3), liquid phase products (C4-C40), and solids (C40+ and chars), with alkane, alkene, alkadiene, aromatic, and multi-cycloaromatics as the predominant compounds. The polymer structure had the greatest impact on product distribution, with minimal influence from molecular weight. Branches in polyethylene (PE) acted as thermal defects initiating degradation. Higher branch density in PE led to increased concentrations of aromatics, branched alkanes, and internal alkenes. PP and PE exhibited distinct degradation mechanisms, with PP requiring less energy for decomposition and yielding more oil. Pyrolysis oil from PCR HDPE and PCR PP contained a higher proportion of branched compounds. Additives in PCR plastics may promote isomerization during pyrolysis.
Seven types of plastics, from varied structures and sources, were pyrolyzed in a fluidized bed reactor. The resulting oils were analyzed by GC×GC, NMR, and ICP, while theory and experiments were combined to explore the degradation mechanism.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4gc04029e</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-7838-6893</orcidid><orcidid>https://orcid.org/0000-0001-6321-2711</orcidid><orcidid>https://orcid.org/0000-0002-1175-5658</orcidid><orcidid>https://orcid.org/0000-0002-4300-7937</orcidid><orcidid>https://orcid.org/0000-0002-5293-5356</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9262 |
ispartof | Green chemistry : an international journal and green chemistry resource : GC, 2024-12, Vol.26 (24), p.1198-11923 |
issn | 1463-9262 1463-9270 |
language | eng |
recordid | cdi_rsc_primary_d4gc04029e |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Alkanes Alkenes Aromatic compounds Composition effects Degradation Fluidized beds High density polyethylenes Isomerization Liquid phases Low density polyethylenes Molecular structure Molecular weight Molecular weight distribution Oils & fats Plastics Polyethylene Polymerase chain reaction Polymers Polyolefins Polypropylene Pyrolysis Resins |
title | The effects of polyolefin structure and source on pyrolysis-derived plastic oil composition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A45%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effects%20of%20polyolefin%20structure%20and%20source%20on%20pyrolysis-derived%20plastic%20oil%20composition&rft.jtitle=Green%20chemistry%20:%20an%20international%20journal%20and%20green%20chemistry%20resource%20:%20GC&rft.au=Wu,%20Jiayang&rft.aucorp=University%20of%20Wisconsin-Madison,%20WI%20(United%20States)&rft.date=2024-12-09&rft.volume=26&rft.issue=24&rft.spage=1198&rft.epage=11923&rft.pages=1198-11923&rft.issn=1463-9262&rft.eissn=1463-9270&rft_id=info:doi/10.1039/d4gc04029e&rft_dat=%3Cproquest_rsc_p%3E3142182807%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3142182807&rft_id=info:pmid/&rfr_iscdi=true |