The effects of polyolefin structure and source on pyrolysis-derived plastic oil composition

Seven types of plastics were pyrolyzed in a fluidized bed reactor: post-consumer recycled (PCR) high-density polyethylene (HDPE), PCR polypropylene (PP), HDPE virgin resins with two different molecular weights, virgin resins of low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Green chemistry : an international journal and green chemistry resource : GC 2024-12, Vol.26 (24), p.1198-11923
Hauptverfasser: Wu, Jiayang, Jiang, Zhen, Cecon, Victor S, Curtzwiler, Greg, Vorst, Keith, Mavrikakis, Manos, Huber, George W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11923
container_issue 24
container_start_page 1198
container_title Green chemistry : an international journal and green chemistry resource : GC
container_volume 26
creator Wu, Jiayang
Jiang, Zhen
Cecon, Victor S
Curtzwiler, Greg
Vorst, Keith
Mavrikakis, Manos
Huber, George W
description Seven types of plastics were pyrolyzed in a fluidized bed reactor: post-consumer recycled (PCR) high-density polyethylene (HDPE), PCR polypropylene (PP), HDPE virgin resins with two different molecular weights, virgin resins of low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), and PP. Pyrolysis produced non-condensable gases (C1-C3), liquid phase products (C4-C40), and solids (C40+ and chars), with alkane, alkene, alkadiene, aromatic, and multi-cycloaromatics as the predominant compounds. The polymer structure had the greatest impact on product distribution, with minimal influence from molecular weight. Branches in polyethylene (PE) acted as thermal defects initiating degradation. Higher branch density in PE led to increased concentrations of aromatics, branched alkanes, and internal alkenes. PP and PE exhibited distinct degradation mechanisms, with PP requiring less energy for decomposition and yielding more oil. Pyrolysis oil from PCR HDPE and PCR PP contained a higher proportion of branched compounds. Additives in PCR plastics may promote isomerization during pyrolysis. Seven types of plastics, from varied structures and sources, were pyrolyzed in a fluidized bed reactor. The resulting oils were analyzed by GC×GC, NMR, and ICP, while theory and experiments were combined to explore the degradation mechanism.
doi_str_mv 10.1039/d4gc04029e
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d4gc04029e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3142182807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c197t-3e8a112f7bc37d5b11d24fee05b35239d11212f326a418d3b25a2ed21b92bcff3</originalsourceid><addsrcrecordid>eNpFkc1LAzEQxYMoWKsX70LQm7Car93tHqXWKhS81JOHsJtMbMp2syZZof-90ZV6moH3Y3jvDUKXlNxRwqt7LT4UEYRVcIQmVBQ8q1hJjg97wU7RWQhbQigtCzFB7-sNYDAGVAzYGdy7du9aMLbDIfpBxcEDrjuNgxu8Auw63O99goINmQZvv0Djvq1DtAo722Lldr0LNlrXnaMTU7cBLv7mFL09Ldbz52z1unyZP6wyRasyZhxmNaXMlI3ipc4bSjUTBoDkDc8Zr3QSk8xZUQs607xhec1AM9pUrFHG8Cm6Hu-65EIGZSOojXJdl0JJJsq8EDRBNyPUe_c5QIhymxJ1yZfkVDA6YzNSJup2pJR3IXgwsvd2V_u9pET-NCwfxXL-2_AiwVcj7IM6cP8f4N_YoHhw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3142182807</pqid></control><display><type>article</type><title>The effects of polyolefin structure and source on pyrolysis-derived plastic oil composition</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Wu, Jiayang ; Jiang, Zhen ; Cecon, Victor S ; Curtzwiler, Greg ; Vorst, Keith ; Mavrikakis, Manos ; Huber, George W</creator><creatorcontrib>Wu, Jiayang ; Jiang, Zhen ; Cecon, Victor S ; Curtzwiler, Greg ; Vorst, Keith ; Mavrikakis, Manos ; Huber, George W ; University of Wisconsin-Madison, WI (United States)</creatorcontrib><description>Seven types of plastics were pyrolyzed in a fluidized bed reactor: post-consumer recycled (PCR) high-density polyethylene (HDPE), PCR polypropylene (PP), HDPE virgin resins with two different molecular weights, virgin resins of low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), and PP. Pyrolysis produced non-condensable gases (C1-C3), liquid phase products (C4-C40), and solids (C40+ and chars), with alkane, alkene, alkadiene, aromatic, and multi-cycloaromatics as the predominant compounds. The polymer structure had the greatest impact on product distribution, with minimal influence from molecular weight. Branches in polyethylene (PE) acted as thermal defects initiating degradation. Higher branch density in PE led to increased concentrations of aromatics, branched alkanes, and internal alkenes. PP and PE exhibited distinct degradation mechanisms, with PP requiring less energy for decomposition and yielding more oil. Pyrolysis oil from PCR HDPE and PCR PP contained a higher proportion of branched compounds. Additives in PCR plastics may promote isomerization during pyrolysis. Seven types of plastics, from varied structures and sources, were pyrolyzed in a fluidized bed reactor. The resulting oils were analyzed by GC×GC, NMR, and ICP, while theory and experiments were combined to explore the degradation mechanism.</description><identifier>ISSN: 1463-9262</identifier><identifier>EISSN: 1463-9270</identifier><identifier>DOI: 10.1039/d4gc04029e</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Alkanes ; Alkenes ; Aromatic compounds ; Composition effects ; Degradation ; Fluidized beds ; High density polyethylenes ; Isomerization ; Liquid phases ; Low density polyethylenes ; Molecular structure ; Molecular weight ; Molecular weight distribution ; Oils &amp; fats ; Plastics ; Polyethylene ; Polymerase chain reaction ; Polymers ; Polyolefins ; Polypropylene ; Pyrolysis ; Resins</subject><ispartof>Green chemistry : an international journal and green chemistry resource : GC, 2024-12, Vol.26 (24), p.1198-11923</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c197t-3e8a112f7bc37d5b11d24fee05b35239d11212f326a418d3b25a2ed21b92bcff3</cites><orcidid>0000-0002-7838-6893 ; 0000-0001-6321-2711 ; 0000-0002-1175-5658 ; 0000-0002-4300-7937 ; 0000-0002-5293-5356</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27907,27908</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2475641$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Jiayang</creatorcontrib><creatorcontrib>Jiang, Zhen</creatorcontrib><creatorcontrib>Cecon, Victor S</creatorcontrib><creatorcontrib>Curtzwiler, Greg</creatorcontrib><creatorcontrib>Vorst, Keith</creatorcontrib><creatorcontrib>Mavrikakis, Manos</creatorcontrib><creatorcontrib>Huber, George W</creatorcontrib><creatorcontrib>University of Wisconsin-Madison, WI (United States)</creatorcontrib><title>The effects of polyolefin structure and source on pyrolysis-derived plastic oil composition</title><title>Green chemistry : an international journal and green chemistry resource : GC</title><description>Seven types of plastics were pyrolyzed in a fluidized bed reactor: post-consumer recycled (PCR) high-density polyethylene (HDPE), PCR polypropylene (PP), HDPE virgin resins with two different molecular weights, virgin resins of low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), and PP. Pyrolysis produced non-condensable gases (C1-C3), liquid phase products (C4-C40), and solids (C40+ and chars), with alkane, alkene, alkadiene, aromatic, and multi-cycloaromatics as the predominant compounds. The polymer structure had the greatest impact on product distribution, with minimal influence from molecular weight. Branches in polyethylene (PE) acted as thermal defects initiating degradation. Higher branch density in PE led to increased concentrations of aromatics, branched alkanes, and internal alkenes. PP and PE exhibited distinct degradation mechanisms, with PP requiring less energy for decomposition and yielding more oil. Pyrolysis oil from PCR HDPE and PCR PP contained a higher proportion of branched compounds. Additives in PCR plastics may promote isomerization during pyrolysis. Seven types of plastics, from varied structures and sources, were pyrolyzed in a fluidized bed reactor. The resulting oils were analyzed by GC×GC, NMR, and ICP, while theory and experiments were combined to explore the degradation mechanism.</description><subject>Alkanes</subject><subject>Alkenes</subject><subject>Aromatic compounds</subject><subject>Composition effects</subject><subject>Degradation</subject><subject>Fluidized beds</subject><subject>High density polyethylenes</subject><subject>Isomerization</subject><subject>Liquid phases</subject><subject>Low density polyethylenes</subject><subject>Molecular structure</subject><subject>Molecular weight</subject><subject>Molecular weight distribution</subject><subject>Oils &amp; fats</subject><subject>Plastics</subject><subject>Polyethylene</subject><subject>Polymerase chain reaction</subject><subject>Polymers</subject><subject>Polyolefins</subject><subject>Polypropylene</subject><subject>Pyrolysis</subject><subject>Resins</subject><issn>1463-9262</issn><issn>1463-9270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkc1LAzEQxYMoWKsX70LQm7Car93tHqXWKhS81JOHsJtMbMp2syZZof-90ZV6moH3Y3jvDUKXlNxRwqt7LT4UEYRVcIQmVBQ8q1hJjg97wU7RWQhbQigtCzFB7-sNYDAGVAzYGdy7du9aMLbDIfpBxcEDrjuNgxu8Auw63O99goINmQZvv0Djvq1DtAo722Lldr0LNlrXnaMTU7cBLv7mFL09Ldbz52z1unyZP6wyRasyZhxmNaXMlI3ipc4bSjUTBoDkDc8Zr3QSk8xZUQs607xhec1AM9pUrFHG8Cm6Hu-65EIGZSOojXJdl0JJJsq8EDRBNyPUe_c5QIhymxJ1yZfkVDA6YzNSJup2pJR3IXgwsvd2V_u9pET-NCwfxXL-2_AiwVcj7IM6cP8f4N_YoHhw</recordid><startdate>20241209</startdate><enddate>20241209</enddate><creator>Wu, Jiayang</creator><creator>Jiang, Zhen</creator><creator>Cecon, Victor S</creator><creator>Curtzwiler, Greg</creator><creator>Vorst, Keith</creator><creator>Mavrikakis, Manos</creator><creator>Huber, George W</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U6</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7838-6893</orcidid><orcidid>https://orcid.org/0000-0001-6321-2711</orcidid><orcidid>https://orcid.org/0000-0002-1175-5658</orcidid><orcidid>https://orcid.org/0000-0002-4300-7937</orcidid><orcidid>https://orcid.org/0000-0002-5293-5356</orcidid></search><sort><creationdate>20241209</creationdate><title>The effects of polyolefin structure and source on pyrolysis-derived plastic oil composition</title><author>Wu, Jiayang ; Jiang, Zhen ; Cecon, Victor S ; Curtzwiler, Greg ; Vorst, Keith ; Mavrikakis, Manos ; Huber, George W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c197t-3e8a112f7bc37d5b11d24fee05b35239d11212f326a418d3b25a2ed21b92bcff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alkanes</topic><topic>Alkenes</topic><topic>Aromatic compounds</topic><topic>Composition effects</topic><topic>Degradation</topic><topic>Fluidized beds</topic><topic>High density polyethylenes</topic><topic>Isomerization</topic><topic>Liquid phases</topic><topic>Low density polyethylenes</topic><topic>Molecular structure</topic><topic>Molecular weight</topic><topic>Molecular weight distribution</topic><topic>Oils &amp; fats</topic><topic>Plastics</topic><topic>Polyethylene</topic><topic>Polymerase chain reaction</topic><topic>Polymers</topic><topic>Polyolefins</topic><topic>Polypropylene</topic><topic>Pyrolysis</topic><topic>Resins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Jiayang</creatorcontrib><creatorcontrib>Jiang, Zhen</creatorcontrib><creatorcontrib>Cecon, Victor S</creatorcontrib><creatorcontrib>Curtzwiler, Greg</creatorcontrib><creatorcontrib>Vorst, Keith</creatorcontrib><creatorcontrib>Mavrikakis, Manos</creatorcontrib><creatorcontrib>Huber, George W</creatorcontrib><creatorcontrib>University of Wisconsin-Madison, WI (United States)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Jiayang</au><au>Jiang, Zhen</au><au>Cecon, Victor S</au><au>Curtzwiler, Greg</au><au>Vorst, Keith</au><au>Mavrikakis, Manos</au><au>Huber, George W</au><aucorp>University of Wisconsin-Madison, WI (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effects of polyolefin structure and source on pyrolysis-derived plastic oil composition</atitle><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle><date>2024-12-09</date><risdate>2024</risdate><volume>26</volume><issue>24</issue><spage>1198</spage><epage>11923</epage><pages>1198-11923</pages><issn>1463-9262</issn><eissn>1463-9270</eissn><abstract>Seven types of plastics were pyrolyzed in a fluidized bed reactor: post-consumer recycled (PCR) high-density polyethylene (HDPE), PCR polypropylene (PP), HDPE virgin resins with two different molecular weights, virgin resins of low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), and PP. Pyrolysis produced non-condensable gases (C1-C3), liquid phase products (C4-C40), and solids (C40+ and chars), with alkane, alkene, alkadiene, aromatic, and multi-cycloaromatics as the predominant compounds. The polymer structure had the greatest impact on product distribution, with minimal influence from molecular weight. Branches in polyethylene (PE) acted as thermal defects initiating degradation. Higher branch density in PE led to increased concentrations of aromatics, branched alkanes, and internal alkenes. PP and PE exhibited distinct degradation mechanisms, with PP requiring less energy for decomposition and yielding more oil. Pyrolysis oil from PCR HDPE and PCR PP contained a higher proportion of branched compounds. Additives in PCR plastics may promote isomerization during pyrolysis. Seven types of plastics, from varied structures and sources, were pyrolyzed in a fluidized bed reactor. The resulting oils were analyzed by GC×GC, NMR, and ICP, while theory and experiments were combined to explore the degradation mechanism.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4gc04029e</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-7838-6893</orcidid><orcidid>https://orcid.org/0000-0001-6321-2711</orcidid><orcidid>https://orcid.org/0000-0002-1175-5658</orcidid><orcidid>https://orcid.org/0000-0002-4300-7937</orcidid><orcidid>https://orcid.org/0000-0002-5293-5356</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9262
ispartof Green chemistry : an international journal and green chemistry resource : GC, 2024-12, Vol.26 (24), p.1198-11923
issn 1463-9262
1463-9270
language eng
recordid cdi_rsc_primary_d4gc04029e
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Alkanes
Alkenes
Aromatic compounds
Composition effects
Degradation
Fluidized beds
High density polyethylenes
Isomerization
Liquid phases
Low density polyethylenes
Molecular structure
Molecular weight
Molecular weight distribution
Oils & fats
Plastics
Polyethylene
Polymerase chain reaction
Polymers
Polyolefins
Polypropylene
Pyrolysis
Resins
title The effects of polyolefin structure and source on pyrolysis-derived plastic oil composition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A45%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effects%20of%20polyolefin%20structure%20and%20source%20on%20pyrolysis-derived%20plastic%20oil%20composition&rft.jtitle=Green%20chemistry%20:%20an%20international%20journal%20and%20green%20chemistry%20resource%20:%20GC&rft.au=Wu,%20Jiayang&rft.aucorp=University%20of%20Wisconsin-Madison,%20WI%20(United%20States)&rft.date=2024-12-09&rft.volume=26&rft.issue=24&rft.spage=1198&rft.epage=11923&rft.pages=1198-11923&rft.issn=1463-9262&rft.eissn=1463-9270&rft_id=info:doi/10.1039/d4gc04029e&rft_dat=%3Cproquest_rsc_p%3E3142182807%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3142182807&rft_id=info:pmid/&rfr_iscdi=true