Regulating intermediate adsorption and HO dissociation on a diatomic catalyst to promote electrocatalytic nitrate reduction to ammonia
Electrochemical conversion of nitrate (NO 3 − ) is an efficient approach to reduce NO 3 − pollutants and it offers a promising alternative for sustainable NH 3 synthesis. However, this process is limited by the mismatched reaction kinetics of NO 3 − discharge, active hydrogen (H*) formation via wate...
Gespeichert in:
Veröffentlicht in: | Energy & environmental science 2024-09, Vol.17 (18), p.6717-6727 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6727 |
---|---|
container_issue | 18 |
container_start_page | 6717 |
container_title | Energy & environmental science |
container_volume | 17 |
creator | Zhang, Xiaoxue Liu, Xiaokang Huang, Zhen-Feng Gan, Li Zhang, Shishi Jia, Ru Ajmal, Muhammad Pan, Lun Shi, Chengxiang Zhang, Xiangwen Yang, Guidong Zou, Ji-Jun |
description | Electrochemical conversion of nitrate (NO
3
−
) is an efficient approach to reduce NO
3
−
pollutants and it offers a promising alternative for sustainable NH
3
synthesis. However, this process is limited by the mismatched reaction kinetics of NO
3
−
discharge, active hydrogen (H*) formation via water dissociation, and stepwise hydrogenation processes. Herein, using density functional theory (DFT) calculations, we screened a library of Cu-M diatomic catalysts coordinated with a N doped carbon matrix (Cu-M-N-C, M = Fe, Co, Ni, Mn, Zn) by balancing N-containing intermediate adsorption and H
2
O dissociation barriers. Among these catalysts, Cu-Fe-N-C demonstrates the best performance with a NH
3
yield rate of 1.22 mmol h
−1
cm
−2
and a high Faradaic efficiency (FE) for NH
3
synthesis of 95.08% at −0.8 V
vs.
the reversible hydrogen electrode, in which diatomic sites facilitate the first NO
3
−
discharge step to generate adsorbed *NO
3
and lower the energy barriers of the following hydrogenation/dehydration steps. More importantly, the incorporated Fe sites could promote the H
2
O dissociation, providing a large supply of H* for the deep hydrogenation of N-containing intermediates. This work reveals the tunable bonding interactions of diatomic sites with multiple reactant/intermediates, offering a new avenue for rational design of highly efficient atomic-level dispersed catalysts for both NO
3
−
abatement and NH
3
synthesis.
Cu-Fe-N-C demonstrates excellent electrocatalytic activity for nitrate reduction by optimizing intermediate adsorption and generating a substantial supply of H* for the thorough hydrogenation of the N-containing intermediates. |
doi_str_mv | 10.1039/d4ee02747g |
format | Article |
fullrecord | <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_d4ee02747g</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d4ee02747g</sourcerecordid><originalsourceid>FETCH-rsc_primary_d4ee02747g3</originalsourceid><addsrcrecordid>eNqFj8tqwzAQRUVoIeljk31AP5BWdhwLr0tLdoXSfRikqZliacxossgP9Ltr90GXXc3lnsOFMWZdubvK7br72CC62je-X5hV5ffNdu9de_Gb265emqtS3p1ra-e7lfl4wf40gFLuLWVFSRgJFC3EwjIqcbaQoz0820ilcJjg3M21nU1OFGwAheFc1CrbUTjxNIADBhX-RjpJmVTmZcF4Cl8jkw0pcSa4MZdvMBS8_bnXZvP0-Ppw2EoJx1EogZyPf8_t_uOfBENWeQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Regulating intermediate adsorption and HO dissociation on a diatomic catalyst to promote electrocatalytic nitrate reduction to ammonia</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Zhang, Xiaoxue ; Liu, Xiaokang ; Huang, Zhen-Feng ; Gan, Li ; Zhang, Shishi ; Jia, Ru ; Ajmal, Muhammad ; Pan, Lun ; Shi, Chengxiang ; Zhang, Xiangwen ; Yang, Guidong ; Zou, Ji-Jun</creator><creatorcontrib>Zhang, Xiaoxue ; Liu, Xiaokang ; Huang, Zhen-Feng ; Gan, Li ; Zhang, Shishi ; Jia, Ru ; Ajmal, Muhammad ; Pan, Lun ; Shi, Chengxiang ; Zhang, Xiangwen ; Yang, Guidong ; Zou, Ji-Jun</creatorcontrib><description>Electrochemical conversion of nitrate (NO
3
−
) is an efficient approach to reduce NO
3
−
pollutants and it offers a promising alternative for sustainable NH
3
synthesis. However, this process is limited by the mismatched reaction kinetics of NO
3
−
discharge, active hydrogen (H*) formation via water dissociation, and stepwise hydrogenation processes. Herein, using density functional theory (DFT) calculations, we screened a library of Cu-M diatomic catalysts coordinated with a N doped carbon matrix (Cu-M-N-C, M = Fe, Co, Ni, Mn, Zn) by balancing N-containing intermediate adsorption and H
2
O dissociation barriers. Among these catalysts, Cu-Fe-N-C demonstrates the best performance with a NH
3
yield rate of 1.22 mmol h
−1
cm
−2
and a high Faradaic efficiency (FE) for NH
3
synthesis of 95.08% at −0.8 V
vs.
the reversible hydrogen electrode, in which diatomic sites facilitate the first NO
3
−
discharge step to generate adsorbed *NO
3
and lower the energy barriers of the following hydrogenation/dehydration steps. More importantly, the incorporated Fe sites could promote the H
2
O dissociation, providing a large supply of H* for the deep hydrogenation of N-containing intermediates. This work reveals the tunable bonding interactions of diatomic sites with multiple reactant/intermediates, offering a new avenue for rational design of highly efficient atomic-level dispersed catalysts for both NO
3
−
abatement and NH
3
synthesis.
Cu-Fe-N-C demonstrates excellent electrocatalytic activity for nitrate reduction by optimizing intermediate adsorption and generating a substantial supply of H* for the thorough hydrogenation of the N-containing intermediates.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/d4ee02747g</identifier><ispartof>Energy & environmental science, 2024-09, Vol.17 (18), p.6717-6727</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhang, Xiaoxue</creatorcontrib><creatorcontrib>Liu, Xiaokang</creatorcontrib><creatorcontrib>Huang, Zhen-Feng</creatorcontrib><creatorcontrib>Gan, Li</creatorcontrib><creatorcontrib>Zhang, Shishi</creatorcontrib><creatorcontrib>Jia, Ru</creatorcontrib><creatorcontrib>Ajmal, Muhammad</creatorcontrib><creatorcontrib>Pan, Lun</creatorcontrib><creatorcontrib>Shi, Chengxiang</creatorcontrib><creatorcontrib>Zhang, Xiangwen</creatorcontrib><creatorcontrib>Yang, Guidong</creatorcontrib><creatorcontrib>Zou, Ji-Jun</creatorcontrib><title>Regulating intermediate adsorption and HO dissociation on a diatomic catalyst to promote electrocatalytic nitrate reduction to ammonia</title><title>Energy & environmental science</title><description>Electrochemical conversion of nitrate (NO
3
−
) is an efficient approach to reduce NO
3
−
pollutants and it offers a promising alternative for sustainable NH
3
synthesis. However, this process is limited by the mismatched reaction kinetics of NO
3
−
discharge, active hydrogen (H*) formation via water dissociation, and stepwise hydrogenation processes. Herein, using density functional theory (DFT) calculations, we screened a library of Cu-M diatomic catalysts coordinated with a N doped carbon matrix (Cu-M-N-C, M = Fe, Co, Ni, Mn, Zn) by balancing N-containing intermediate adsorption and H
2
O dissociation barriers. Among these catalysts, Cu-Fe-N-C demonstrates the best performance with a NH
3
yield rate of 1.22 mmol h
−1
cm
−2
and a high Faradaic efficiency (FE) for NH
3
synthesis of 95.08% at −0.8 V
vs.
the reversible hydrogen electrode, in which diatomic sites facilitate the first NO
3
−
discharge step to generate adsorbed *NO
3
and lower the energy barriers of the following hydrogenation/dehydration steps. More importantly, the incorporated Fe sites could promote the H
2
O dissociation, providing a large supply of H* for the deep hydrogenation of N-containing intermediates. This work reveals the tunable bonding interactions of diatomic sites with multiple reactant/intermediates, offering a new avenue for rational design of highly efficient atomic-level dispersed catalysts for both NO
3
−
abatement and NH
3
synthesis.
Cu-Fe-N-C demonstrates excellent electrocatalytic activity for nitrate reduction by optimizing intermediate adsorption and generating a substantial supply of H* for the thorough hydrogenation of the N-containing intermediates.</description><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFj8tqwzAQRUVoIeljk31AP5BWdhwLr0tLdoXSfRikqZliacxossgP9Ltr90GXXc3lnsOFMWZdubvK7br72CC62je-X5hV5ffNdu9de_Gb265emqtS3p1ra-e7lfl4wf40gFLuLWVFSRgJFC3EwjIqcbaQoz0820ilcJjg3M21nU1OFGwAheFc1CrbUTjxNIADBhX-RjpJmVTmZcF4Cl8jkw0pcSa4MZdvMBS8_bnXZvP0-Ppw2EoJx1EogZyPf8_t_uOfBENWeQ</recordid><startdate>20240918</startdate><enddate>20240918</enddate><creator>Zhang, Xiaoxue</creator><creator>Liu, Xiaokang</creator><creator>Huang, Zhen-Feng</creator><creator>Gan, Li</creator><creator>Zhang, Shishi</creator><creator>Jia, Ru</creator><creator>Ajmal, Muhammad</creator><creator>Pan, Lun</creator><creator>Shi, Chengxiang</creator><creator>Zhang, Xiangwen</creator><creator>Yang, Guidong</creator><creator>Zou, Ji-Jun</creator><scope/></search><sort><creationdate>20240918</creationdate><title>Regulating intermediate adsorption and HO dissociation on a diatomic catalyst to promote electrocatalytic nitrate reduction to ammonia</title><author>Zhang, Xiaoxue ; Liu, Xiaokang ; Huang, Zhen-Feng ; Gan, Li ; Zhang, Shishi ; Jia, Ru ; Ajmal, Muhammad ; Pan, Lun ; Shi, Chengxiang ; Zhang, Xiangwen ; Yang, Guidong ; Zou, Ji-Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_d4ee02747g3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xiaoxue</creatorcontrib><creatorcontrib>Liu, Xiaokang</creatorcontrib><creatorcontrib>Huang, Zhen-Feng</creatorcontrib><creatorcontrib>Gan, Li</creatorcontrib><creatorcontrib>Zhang, Shishi</creatorcontrib><creatorcontrib>Jia, Ru</creatorcontrib><creatorcontrib>Ajmal, Muhammad</creatorcontrib><creatorcontrib>Pan, Lun</creatorcontrib><creatorcontrib>Shi, Chengxiang</creatorcontrib><creatorcontrib>Zhang, Xiangwen</creatorcontrib><creatorcontrib>Yang, Guidong</creatorcontrib><creatorcontrib>Zou, Ji-Jun</creatorcontrib><jtitle>Energy & environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xiaoxue</au><au>Liu, Xiaokang</au><au>Huang, Zhen-Feng</au><au>Gan, Li</au><au>Zhang, Shishi</au><au>Jia, Ru</au><au>Ajmal, Muhammad</au><au>Pan, Lun</au><au>Shi, Chengxiang</au><au>Zhang, Xiangwen</au><au>Yang, Guidong</au><au>Zou, Ji-Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulating intermediate adsorption and HO dissociation on a diatomic catalyst to promote electrocatalytic nitrate reduction to ammonia</atitle><jtitle>Energy & environmental science</jtitle><date>2024-09-18</date><risdate>2024</risdate><volume>17</volume><issue>18</issue><spage>6717</spage><epage>6727</epage><pages>6717-6727</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Electrochemical conversion of nitrate (NO
3
−
) is an efficient approach to reduce NO
3
−
pollutants and it offers a promising alternative for sustainable NH
3
synthesis. However, this process is limited by the mismatched reaction kinetics of NO
3
−
discharge, active hydrogen (H*) formation via water dissociation, and stepwise hydrogenation processes. Herein, using density functional theory (DFT) calculations, we screened a library of Cu-M diatomic catalysts coordinated with a N doped carbon matrix (Cu-M-N-C, M = Fe, Co, Ni, Mn, Zn) by balancing N-containing intermediate adsorption and H
2
O dissociation barriers. Among these catalysts, Cu-Fe-N-C demonstrates the best performance with a NH
3
yield rate of 1.22 mmol h
−1
cm
−2
and a high Faradaic efficiency (FE) for NH
3
synthesis of 95.08% at −0.8 V
vs.
the reversible hydrogen electrode, in which diatomic sites facilitate the first NO
3
−
discharge step to generate adsorbed *NO
3
and lower the energy barriers of the following hydrogenation/dehydration steps. More importantly, the incorporated Fe sites could promote the H
2
O dissociation, providing a large supply of H* for the deep hydrogenation of N-containing intermediates. This work reveals the tunable bonding interactions of diatomic sites with multiple reactant/intermediates, offering a new avenue for rational design of highly efficient atomic-level dispersed catalysts for both NO
3
−
abatement and NH
3
synthesis.
Cu-Fe-N-C demonstrates excellent electrocatalytic activity for nitrate reduction by optimizing intermediate adsorption and generating a substantial supply of H* for the thorough hydrogenation of the N-containing intermediates.</abstract><doi>10.1039/d4ee02747g</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-5692 |
ispartof | Energy & environmental science, 2024-09, Vol.17 (18), p.6717-6727 |
issn | 1754-5692 1754-5706 |
language | |
recordid | cdi_rsc_primary_d4ee02747g |
source | Royal Society Of Chemistry Journals 2008- |
title | Regulating intermediate adsorption and HO dissociation on a diatomic catalyst to promote electrocatalytic nitrate reduction to ammonia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T18%3A38%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulating%20intermediate%20adsorption%20and%20HO%20dissociation%20on%20a%20diatomic%20catalyst%20to%20promote%20electrocatalytic%20nitrate%20reduction%20to%20ammonia&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Zhang,%20Xiaoxue&rft.date=2024-09-18&rft.volume=17&rft.issue=18&rft.spage=6717&rft.epage=6727&rft.pages=6717-6727&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/d4ee02747g&rft_dat=%3Crsc%3Ed4ee02747g%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |