Facet-governed Zn homoepitaxy lattice potential regulation

The irreversibility of the Zn anode stemming from disordered Zn deposition and rampant hydrogen evolution has been a formidable challenge, impeding the practical advancement of aqueous Zn-ion batteries. Directing the epitaxial deposition of polycrystalline Zn at the anode/electrolyte interface is ap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental science 2024-07, Vol.17 (15), p.5563-5575
Hauptverfasser: Yang, Xianzhong, Lu, Yan, Liu, Zhetong, Ji, Haoqing, Chen, Ziyan, Peng, Jun, Su, Yiwen, Zou, Yuhan, Wu, Chao, Dou, Shixue, Gao, Peng, Guo, Zaiping, Sun, Jingyu
Format: Artikel
Sprache:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5575
container_issue 15
container_start_page 5563
container_title Energy & environmental science
container_volume 17
creator Yang, Xianzhong
Lu, Yan
Liu, Zhetong
Ji, Haoqing
Chen, Ziyan
Peng, Jun
Su, Yiwen
Zou, Yuhan
Wu, Chao
Dou, Shixue
Gao, Peng
Guo, Zaiping
Sun, Jingyu
description The irreversibility of the Zn anode stemming from disordered Zn deposition and rampant hydrogen evolution has been a formidable challenge, impeding the practical advancement of aqueous Zn-ion batteries. Directing the epitaxial deposition of polycrystalline Zn at the anode/electrolyte interface is appealing to address the obstacle, but remains poorly explored. Here, a comprehensive strategy by employing facet-governed homoepitaxy of polycrystalline Zn via lattice potential regulation is reported. The crystallinity of the Zn substrate could be significantly improved during the growth of a prototype fluoride-contained overlayer by chemical vapour deposition. This treatment establishes a periodic lattice potential field for Zn deposition. The introduction of an overlayer promotes the uniform nucleation of Zn at the infancy stage of electrodeposition. To counteract the tip effect of Zn growth, an ionic liquid is concurrently employed to alleviate Zn 2+ accumulation throughout cation adsorption, fostering stable orientational deposition. Such an additive can also reduce water activity, effectively inhibiting hydrogen evolution. The thus-derived Zn anodes demonstrate decent durability even at a low N/P ratio. This work unlocks a new opportunity for guiding epitaxial Zn deposition toward pragmatic Zn anodes. The comprehensive regulation of an in situ grown overlayer and ionic liquid additive enables the Zn anode to harvest homoepitaxial deposition along certain Zn crystal facets, facilitating the commercial application of aqueous Zn-ion batteries.
doi_str_mv 10.1039/d4ee00881b
format Article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_d4ee00881b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d4ee00881b</sourcerecordid><originalsourceid>FETCH-rsc_primary_d4ee00881b3</originalsourceid><addsrcrecordid>eNpjYBAyNNAzNDC21E8xSU01MLCwMExiYuA0NDc10TU1NzBjgbHNLI04GLiKi7MMDMyMDMwtORms3BKTU0t00_PLUovyUlMUovIUMvJz81MLMksSKyoVchJLSjKTUxUK8ktS80oyE3MUilLTS4Gimfl5PAysaYk5xam8UJqbQdbNNcTZQ7eoODm-oCgzN7GoMh7hIGNC8gCHizlg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Facet-governed Zn homoepitaxy lattice potential regulation</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Yang, Xianzhong ; Lu, Yan ; Liu, Zhetong ; Ji, Haoqing ; Chen, Ziyan ; Peng, Jun ; Su, Yiwen ; Zou, Yuhan ; Wu, Chao ; Dou, Shixue ; Gao, Peng ; Guo, Zaiping ; Sun, Jingyu</creator><creatorcontrib>Yang, Xianzhong ; Lu, Yan ; Liu, Zhetong ; Ji, Haoqing ; Chen, Ziyan ; Peng, Jun ; Su, Yiwen ; Zou, Yuhan ; Wu, Chao ; Dou, Shixue ; Gao, Peng ; Guo, Zaiping ; Sun, Jingyu</creatorcontrib><description>The irreversibility of the Zn anode stemming from disordered Zn deposition and rampant hydrogen evolution has been a formidable challenge, impeding the practical advancement of aqueous Zn-ion batteries. Directing the epitaxial deposition of polycrystalline Zn at the anode/electrolyte interface is appealing to address the obstacle, but remains poorly explored. Here, a comprehensive strategy by employing facet-governed homoepitaxy of polycrystalline Zn via lattice potential regulation is reported. The crystallinity of the Zn substrate could be significantly improved during the growth of a prototype fluoride-contained overlayer by chemical vapour deposition. This treatment establishes a periodic lattice potential field for Zn deposition. The introduction of an overlayer promotes the uniform nucleation of Zn at the infancy stage of electrodeposition. To counteract the tip effect of Zn growth, an ionic liquid is concurrently employed to alleviate Zn 2+ accumulation throughout cation adsorption, fostering stable orientational deposition. Such an additive can also reduce water activity, effectively inhibiting hydrogen evolution. The thus-derived Zn anodes demonstrate decent durability even at a low N/P ratio. This work unlocks a new opportunity for guiding epitaxial Zn deposition toward pragmatic Zn anodes. The comprehensive regulation of an in situ grown overlayer and ionic liquid additive enables the Zn anode to harvest homoepitaxial deposition along certain Zn crystal facets, facilitating the commercial application of aqueous Zn-ion batteries.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/d4ee00881b</identifier><ispartof>Energy &amp; environmental science, 2024-07, Vol.17 (15), p.5563-5575</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Yang, Xianzhong</creatorcontrib><creatorcontrib>Lu, Yan</creatorcontrib><creatorcontrib>Liu, Zhetong</creatorcontrib><creatorcontrib>Ji, Haoqing</creatorcontrib><creatorcontrib>Chen, Ziyan</creatorcontrib><creatorcontrib>Peng, Jun</creatorcontrib><creatorcontrib>Su, Yiwen</creatorcontrib><creatorcontrib>Zou, Yuhan</creatorcontrib><creatorcontrib>Wu, Chao</creatorcontrib><creatorcontrib>Dou, Shixue</creatorcontrib><creatorcontrib>Gao, Peng</creatorcontrib><creatorcontrib>Guo, Zaiping</creatorcontrib><creatorcontrib>Sun, Jingyu</creatorcontrib><title>Facet-governed Zn homoepitaxy lattice potential regulation</title><title>Energy &amp; environmental science</title><description>The irreversibility of the Zn anode stemming from disordered Zn deposition and rampant hydrogen evolution has been a formidable challenge, impeding the practical advancement of aqueous Zn-ion batteries. Directing the epitaxial deposition of polycrystalline Zn at the anode/electrolyte interface is appealing to address the obstacle, but remains poorly explored. Here, a comprehensive strategy by employing facet-governed homoepitaxy of polycrystalline Zn via lattice potential regulation is reported. The crystallinity of the Zn substrate could be significantly improved during the growth of a prototype fluoride-contained overlayer by chemical vapour deposition. This treatment establishes a periodic lattice potential field for Zn deposition. The introduction of an overlayer promotes the uniform nucleation of Zn at the infancy stage of electrodeposition. To counteract the tip effect of Zn growth, an ionic liquid is concurrently employed to alleviate Zn 2+ accumulation throughout cation adsorption, fostering stable orientational deposition. Such an additive can also reduce water activity, effectively inhibiting hydrogen evolution. The thus-derived Zn anodes demonstrate decent durability even at a low N/P ratio. This work unlocks a new opportunity for guiding epitaxial Zn deposition toward pragmatic Zn anodes. The comprehensive regulation of an in situ grown overlayer and ionic liquid additive enables the Zn anode to harvest homoepitaxial deposition along certain Zn crystal facets, facilitating the commercial application of aqueous Zn-ion batteries.</description><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpjYBAyNNAzNDC21E8xSU01MLCwMExiYuA0NDc10TU1NzBjgbHNLI04GLiKi7MMDMyMDMwtORms3BKTU0t00_PLUovyUlMUovIUMvJz81MLMksSKyoVchJLSjKTUxUK8ktS80oyE3MUilLTS4Gimfl5PAysaYk5xam8UJqbQdbNNcTZQ7eoODm-oCgzN7GoMh7hIGNC8gCHizlg</recordid><startdate>20240730</startdate><enddate>20240730</enddate><creator>Yang, Xianzhong</creator><creator>Lu, Yan</creator><creator>Liu, Zhetong</creator><creator>Ji, Haoqing</creator><creator>Chen, Ziyan</creator><creator>Peng, Jun</creator><creator>Su, Yiwen</creator><creator>Zou, Yuhan</creator><creator>Wu, Chao</creator><creator>Dou, Shixue</creator><creator>Gao, Peng</creator><creator>Guo, Zaiping</creator><creator>Sun, Jingyu</creator><scope/></search><sort><creationdate>20240730</creationdate><title>Facet-governed Zn homoepitaxy lattice potential regulation</title><author>Yang, Xianzhong ; Lu, Yan ; Liu, Zhetong ; Ji, Haoqing ; Chen, Ziyan ; Peng, Jun ; Su, Yiwen ; Zou, Yuhan ; Wu, Chao ; Dou, Shixue ; Gao, Peng ; Guo, Zaiping ; Sun, Jingyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_d4ee00881b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Xianzhong</creatorcontrib><creatorcontrib>Lu, Yan</creatorcontrib><creatorcontrib>Liu, Zhetong</creatorcontrib><creatorcontrib>Ji, Haoqing</creatorcontrib><creatorcontrib>Chen, Ziyan</creatorcontrib><creatorcontrib>Peng, Jun</creatorcontrib><creatorcontrib>Su, Yiwen</creatorcontrib><creatorcontrib>Zou, Yuhan</creatorcontrib><creatorcontrib>Wu, Chao</creatorcontrib><creatorcontrib>Dou, Shixue</creatorcontrib><creatorcontrib>Gao, Peng</creatorcontrib><creatorcontrib>Guo, Zaiping</creatorcontrib><creatorcontrib>Sun, Jingyu</creatorcontrib><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Xianzhong</au><au>Lu, Yan</au><au>Liu, Zhetong</au><au>Ji, Haoqing</au><au>Chen, Ziyan</au><au>Peng, Jun</au><au>Su, Yiwen</au><au>Zou, Yuhan</au><au>Wu, Chao</au><au>Dou, Shixue</au><au>Gao, Peng</au><au>Guo, Zaiping</au><au>Sun, Jingyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Facet-governed Zn homoepitaxy lattice potential regulation</atitle><jtitle>Energy &amp; environmental science</jtitle><date>2024-07-30</date><risdate>2024</risdate><volume>17</volume><issue>15</issue><spage>5563</spage><epage>5575</epage><pages>5563-5575</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>The irreversibility of the Zn anode stemming from disordered Zn deposition and rampant hydrogen evolution has been a formidable challenge, impeding the practical advancement of aqueous Zn-ion batteries. Directing the epitaxial deposition of polycrystalline Zn at the anode/electrolyte interface is appealing to address the obstacle, but remains poorly explored. Here, a comprehensive strategy by employing facet-governed homoepitaxy of polycrystalline Zn via lattice potential regulation is reported. The crystallinity of the Zn substrate could be significantly improved during the growth of a prototype fluoride-contained overlayer by chemical vapour deposition. This treatment establishes a periodic lattice potential field for Zn deposition. The introduction of an overlayer promotes the uniform nucleation of Zn at the infancy stage of electrodeposition. To counteract the tip effect of Zn growth, an ionic liquid is concurrently employed to alleviate Zn 2+ accumulation throughout cation adsorption, fostering stable orientational deposition. Such an additive can also reduce water activity, effectively inhibiting hydrogen evolution. The thus-derived Zn anodes demonstrate decent durability even at a low N/P ratio. This work unlocks a new opportunity for guiding epitaxial Zn deposition toward pragmatic Zn anodes. The comprehensive regulation of an in situ grown overlayer and ionic liquid additive enables the Zn anode to harvest homoepitaxial deposition along certain Zn crystal facets, facilitating the commercial application of aqueous Zn-ion batteries.</abstract><doi>10.1039/d4ee00881b</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2024-07, Vol.17 (15), p.5563-5575
issn 1754-5692
1754-5706
language
recordid cdi_rsc_primary_d4ee00881b
source Royal Society Of Chemistry Journals 2008-
title Facet-governed Zn homoepitaxy lattice potential regulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A03%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Facet-governed%20Zn%20homoepitaxy%20lattice%20potential%20regulation&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Yang,%20Xianzhong&rft.date=2024-07-30&rft.volume=17&rft.issue=15&rft.spage=5563&rft.epage=5575&rft.pages=5563-5575&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/d4ee00881b&rft_dat=%3Crsc%3Ed4ee00881b%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true