Insights into lithium inventory quantification of LiNiMnO-graphite full cells
High voltage spinel cathode LiNi 0.5 Mn 1.5 O 4 (LNMO) offers higher energy density and competitive cost compared to traditional cathodes in lithium-ion batteries, making it a promising option for high-performance battery applications. However, the fast capacity decay in full cells hinders further c...
Gespeichert in:
Veröffentlicht in: | Energy & environmental science 2024-06, Vol.17 (12), p.4263-4272 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4272 |
---|---|
container_issue | 12 |
container_start_page | 4263 |
container_title | Energy & environmental science |
container_volume | 17 |
creator | Bao, Wurigumula Yao, Weiliang Li, Yixuan Sayahpour, Baharak Han, Bing Raghavendran, Ganesh Shimizu, Ryosuke Cronk, Ashley Zhang, Minghao Li, Weikang Meng, Ying Shirley |
description | High voltage spinel cathode LiNi
0.5
Mn
1.5
O
4
(LNMO) offers higher energy density and competitive cost compared to traditional cathodes in lithium-ion batteries, making it a promising option for high-performance battery applications. However, the fast capacity decay in full cells hinders further commercialization. The Li inventory evolution upon cycling in the LNMO-graphite pouch cell is systematically studied by developing lithium quantification methods on the cathode, anode, and electrolyte. The findings reveal that active Li loss is a primary factor contributing to capacity decay, stemming from an unstable anode interphase caused by crosstalk. This crosstalk primarily originates from electrolyte degradation on the cathode under high-voltage operation, leading to increased moisture and acidity, subsequently corroding the anode interphase. In response, two approaches including an aluminum oxide (Al
2
O
3
) surface coating layer on the cathode and lithium difluoro(oxalato)borate (LiDFOB) electrolyte additives are evaluated systematically, resulting in cycling stability enhancement. This study offers a quantitative approach to understanding the Li inventory loss in the LNMO-Gr system, providing unique insights and guidance into identifying critical bottlenecks for developing high voltage (>4.4 V) lithium battery technology.
A systematic methodology for the quantification of lithium inventory is developed and the degradation mechanisms of high-voltage lithium batteries are revealed. |
doi_str_mv | 10.1039/d4ee00842a |
format | Article |
fullrecord | <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_d4ee00842a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d4ee00842a</sourcerecordid><originalsourceid>FETCH-rsc_primary_d4ee00842a3</originalsourceid><addsrcrecordid>eNqFjr0KwjAYRYMoWH8WdyEvUP36b2dRFKwu7iXUpP0kTWuSCn17HRRHp3MPdzmELDxYeRCk61vIOcAm9NmAOF4ShW6UQDz87jj1x2RizB0g9iFJHZIdlcGysoaisg2VaCvs6rc8-dt1Tx8dUxYFFsxio2gj6AnPmKmLW2rWVmg5FZ2UtOBSmhkZCSYNn384Jcv97ro9uNoUeauxZrrPf43Bv_8FiE1ATA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Insights into lithium inventory quantification of LiNiMnO-graphite full cells</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Bao, Wurigumula ; Yao, Weiliang ; Li, Yixuan ; Sayahpour, Baharak ; Han, Bing ; Raghavendran, Ganesh ; Shimizu, Ryosuke ; Cronk, Ashley ; Zhang, Minghao ; Li, Weikang ; Meng, Ying Shirley</creator><creatorcontrib>Bao, Wurigumula ; Yao, Weiliang ; Li, Yixuan ; Sayahpour, Baharak ; Han, Bing ; Raghavendran, Ganesh ; Shimizu, Ryosuke ; Cronk, Ashley ; Zhang, Minghao ; Li, Weikang ; Meng, Ying Shirley</creatorcontrib><description>High voltage spinel cathode LiNi
0.5
Mn
1.5
O
4
(LNMO) offers higher energy density and competitive cost compared to traditional cathodes in lithium-ion batteries, making it a promising option for high-performance battery applications. However, the fast capacity decay in full cells hinders further commercialization. The Li inventory evolution upon cycling in the LNMO-graphite pouch cell is systematically studied by developing lithium quantification methods on the cathode, anode, and electrolyte. The findings reveal that active Li loss is a primary factor contributing to capacity decay, stemming from an unstable anode interphase caused by crosstalk. This crosstalk primarily originates from electrolyte degradation on the cathode under high-voltage operation, leading to increased moisture and acidity, subsequently corroding the anode interphase. In response, two approaches including an aluminum oxide (Al
2
O
3
) surface coating layer on the cathode and lithium difluoro(oxalato)borate (LiDFOB) electrolyte additives are evaluated systematically, resulting in cycling stability enhancement. This study offers a quantitative approach to understanding the Li inventory loss in the LNMO-Gr system, providing unique insights and guidance into identifying critical bottlenecks for developing high voltage (>4.4 V) lithium battery technology.
A systematic methodology for the quantification of lithium inventory is developed and the degradation mechanisms of high-voltage lithium batteries are revealed.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/d4ee00842a</identifier><ispartof>Energy & environmental science, 2024-06, Vol.17 (12), p.4263-4272</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Bao, Wurigumula</creatorcontrib><creatorcontrib>Yao, Weiliang</creatorcontrib><creatorcontrib>Li, Yixuan</creatorcontrib><creatorcontrib>Sayahpour, Baharak</creatorcontrib><creatorcontrib>Han, Bing</creatorcontrib><creatorcontrib>Raghavendran, Ganesh</creatorcontrib><creatorcontrib>Shimizu, Ryosuke</creatorcontrib><creatorcontrib>Cronk, Ashley</creatorcontrib><creatorcontrib>Zhang, Minghao</creatorcontrib><creatorcontrib>Li, Weikang</creatorcontrib><creatorcontrib>Meng, Ying Shirley</creatorcontrib><title>Insights into lithium inventory quantification of LiNiMnO-graphite full cells</title><title>Energy & environmental science</title><description>High voltage spinel cathode LiNi
0.5
Mn
1.5
O
4
(LNMO) offers higher energy density and competitive cost compared to traditional cathodes in lithium-ion batteries, making it a promising option for high-performance battery applications. However, the fast capacity decay in full cells hinders further commercialization. The Li inventory evolution upon cycling in the LNMO-graphite pouch cell is systematically studied by developing lithium quantification methods on the cathode, anode, and electrolyte. The findings reveal that active Li loss is a primary factor contributing to capacity decay, stemming from an unstable anode interphase caused by crosstalk. This crosstalk primarily originates from electrolyte degradation on the cathode under high-voltage operation, leading to increased moisture and acidity, subsequently corroding the anode interphase. In response, two approaches including an aluminum oxide (Al
2
O
3
) surface coating layer on the cathode and lithium difluoro(oxalato)borate (LiDFOB) electrolyte additives are evaluated systematically, resulting in cycling stability enhancement. This study offers a quantitative approach to understanding the Li inventory loss in the LNMO-Gr system, providing unique insights and guidance into identifying critical bottlenecks for developing high voltage (>4.4 V) lithium battery technology.
A systematic methodology for the quantification of lithium inventory is developed and the degradation mechanisms of high-voltage lithium batteries are revealed.</description><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFjr0KwjAYRYMoWH8WdyEvUP36b2dRFKwu7iXUpP0kTWuSCn17HRRHp3MPdzmELDxYeRCk61vIOcAm9NmAOF4ShW6UQDz87jj1x2RizB0g9iFJHZIdlcGysoaisg2VaCvs6rc8-dt1Tx8dUxYFFsxio2gj6AnPmKmLW2rWVmg5FZ2UtOBSmhkZCSYNn384Jcv97ro9uNoUeauxZrrPf43Bv_8FiE1ATA</recordid><startdate>20240618</startdate><enddate>20240618</enddate><creator>Bao, Wurigumula</creator><creator>Yao, Weiliang</creator><creator>Li, Yixuan</creator><creator>Sayahpour, Baharak</creator><creator>Han, Bing</creator><creator>Raghavendran, Ganesh</creator><creator>Shimizu, Ryosuke</creator><creator>Cronk, Ashley</creator><creator>Zhang, Minghao</creator><creator>Li, Weikang</creator><creator>Meng, Ying Shirley</creator><scope/></search><sort><creationdate>20240618</creationdate><title>Insights into lithium inventory quantification of LiNiMnO-graphite full cells</title><author>Bao, Wurigumula ; Yao, Weiliang ; Li, Yixuan ; Sayahpour, Baharak ; Han, Bing ; Raghavendran, Ganesh ; Shimizu, Ryosuke ; Cronk, Ashley ; Zhang, Minghao ; Li, Weikang ; Meng, Ying Shirley</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_d4ee00842a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bao, Wurigumula</creatorcontrib><creatorcontrib>Yao, Weiliang</creatorcontrib><creatorcontrib>Li, Yixuan</creatorcontrib><creatorcontrib>Sayahpour, Baharak</creatorcontrib><creatorcontrib>Han, Bing</creatorcontrib><creatorcontrib>Raghavendran, Ganesh</creatorcontrib><creatorcontrib>Shimizu, Ryosuke</creatorcontrib><creatorcontrib>Cronk, Ashley</creatorcontrib><creatorcontrib>Zhang, Minghao</creatorcontrib><creatorcontrib>Li, Weikang</creatorcontrib><creatorcontrib>Meng, Ying Shirley</creatorcontrib><jtitle>Energy & environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bao, Wurigumula</au><au>Yao, Weiliang</au><au>Li, Yixuan</au><au>Sayahpour, Baharak</au><au>Han, Bing</au><au>Raghavendran, Ganesh</au><au>Shimizu, Ryosuke</au><au>Cronk, Ashley</au><au>Zhang, Minghao</au><au>Li, Weikang</au><au>Meng, Ying Shirley</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insights into lithium inventory quantification of LiNiMnO-graphite full cells</atitle><jtitle>Energy & environmental science</jtitle><date>2024-06-18</date><risdate>2024</risdate><volume>17</volume><issue>12</issue><spage>4263</spage><epage>4272</epage><pages>4263-4272</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>High voltage spinel cathode LiNi
0.5
Mn
1.5
O
4
(LNMO) offers higher energy density and competitive cost compared to traditional cathodes in lithium-ion batteries, making it a promising option for high-performance battery applications. However, the fast capacity decay in full cells hinders further commercialization. The Li inventory evolution upon cycling in the LNMO-graphite pouch cell is systematically studied by developing lithium quantification methods on the cathode, anode, and electrolyte. The findings reveal that active Li loss is a primary factor contributing to capacity decay, stemming from an unstable anode interphase caused by crosstalk. This crosstalk primarily originates from electrolyte degradation on the cathode under high-voltage operation, leading to increased moisture and acidity, subsequently corroding the anode interphase. In response, two approaches including an aluminum oxide (Al
2
O
3
) surface coating layer on the cathode and lithium difluoro(oxalato)borate (LiDFOB) electrolyte additives are evaluated systematically, resulting in cycling stability enhancement. This study offers a quantitative approach to understanding the Li inventory loss in the LNMO-Gr system, providing unique insights and guidance into identifying critical bottlenecks for developing high voltage (>4.4 V) lithium battery technology.
A systematic methodology for the quantification of lithium inventory is developed and the degradation mechanisms of high-voltage lithium batteries are revealed.</abstract><doi>10.1039/d4ee00842a</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-5692 |
ispartof | Energy & environmental science, 2024-06, Vol.17 (12), p.4263-4272 |
issn | 1754-5692 1754-5706 |
language | |
recordid | cdi_rsc_primary_d4ee00842a |
source | Royal Society Of Chemistry Journals 2008- |
title | Insights into lithium inventory quantification of LiNiMnO-graphite full cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A04%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insights%20into%20lithium%20inventory%20quantification%20of%20LiNiMnO-graphite%20full%20cells&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Bao,%20Wurigumula&rft.date=2024-06-18&rft.volume=17&rft.issue=12&rft.spage=4263&rft.epage=4272&rft.pages=4263-4272&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/d4ee00842a&rft_dat=%3Crsc%3Ed4ee00842a%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |