Heterostructure boosts a noble-metal-free oxygen-evolving electrocatalyst in acid

Developing noble metal-free electrocatalysts (NMFEs) for the oxygen evolution reaction (OER) is tremendously challenging in acid. Despite extensive research efforts, few reported NMFEs can compete with Ru/Ir oxides for acidic OERs. Here, we report a heterostructure-engineering method to break the ac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental science 2024-08, Vol.17 (16), p.5972-5983
Hauptverfasser: Wang, Jian, Zhang, Yunze, Wang, Ying, Cho, Junsic, Chan, Ting-Shan, Ha, Yang, Haw, Shu-Chih, Kao, Cheng-Wei, Wang, Ziyi, Lei, Jia, Ju, Min, Tang, Jiayi, Liu, Tong, Zhao, Siyuan, Dai, Yawen, Baron-Wiechec, Aleksandra, Chen, Fu-Rong, Wang, Wenxiong, Choi, Chang Hyuck, Shao, Zongping, Ni, Meng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5983
container_issue 16
container_start_page 5972
container_title Energy & environmental science
container_volume 17
creator Wang, Jian
Zhang, Yunze
Wang, Ying
Cho, Junsic
Chan, Ting-Shan
Ha, Yang
Haw, Shu-Chih
Kao, Cheng-Wei
Wang, Ziyi
Lei, Jia
Ju, Min
Tang, Jiayi
Liu, Tong
Zhao, Siyuan
Dai, Yawen
Baron-Wiechec, Aleksandra
Chen, Fu-Rong
Wang, Wenxiong
Choi, Chang Hyuck
Shao, Zongping
Ni, Meng
description Developing noble metal-free electrocatalysts (NMFEs) for the oxygen evolution reaction (OER) is tremendously challenging in acid. Despite extensive research efforts, few reported NMFEs can compete with Ru/Ir oxides for acidic OERs. Here, we report a heterostructure-engineering method to break the activity-stability limit of OER electrocatalysts and yield a noble-metal-free oxide that competes with RuO 2 in terms of OER specific activity and stability in acid. Via a set of correlative operando characterization techniques, heterostructured Co 3 O 4 /MnO 2 suppressed the in situ reconstruction of Co 3 O 4 and MnO 2 , and mitigated the electrochemical cycling-accelerated catalyst leaching, thus improving the acidic OER stability. Moreover, first-principles calculations supported that the synergy of Co and Mn in Co 3 O 4 /MnO 2 lowered the theoretical OER overpotentials. The optimized Co 3 O 4 /MnO 2 achieved an activity of 10 mA cm −2 at 319 ± 1.2 mV overpotential, and it demonstrated low degradation during the varying-current stability test (up to 200 mA cm −2 ) for 100 hours, making it among the best NMFEs for acidic OERs. Moreover, the promising performance of Co 3 O 4 /MnO 2 as the anodic catalyst was also validated in a proton-conducting membrane water electrolysis cell. This work breaks the activity-stability trade-off of noble metal-free OER electrocatalysts and yields a record performance in acid.
doi_str_mv 10.1039/d4ee00189c
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d4ee00189c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3092192368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c170t-5c62603ee2705278a3729935eaa8046417ae89ead3a083d4ce6975c80e05ed023</originalsourceid><addsrcrecordid>eNpF0E1LAzEQBuAgCtbqxbuw4E2ITpLN11FqtUJBBD0vaXZatmw3NcmK_feu1o_TzMDDDPMScs7gmoGwN3WJCMCM9QdkxLQsqdSgDn97ZfkxOUlpDaA4aDsizzPMGEPKsfe5j1gswjCkwhVdWLRIN5hdS5cRsQgfuxV2FN9D-950qwJb9DkG7waxS7lousL5pj4lR0vXJjz7qWPyej99mczo_OnhcXI7p55pyFR6xRUIRK5Bcm2c0NxaIdE5A6UqmXZoLLpaODCiLj0qq6U3gCCxBi7G5HK_dxvDW48pV-vQx244WQmwnFkulBnU1V754ckUcVltY7NxcVcxqL4iq-7K6fQ7ssmAL_Y4Jv_n_iMVn8eEaEM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092192368</pqid></control><display><type>article</type><title>Heterostructure boosts a noble-metal-free oxygen-evolving electrocatalyst in acid</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Wang, Jian ; Zhang, Yunze ; Wang, Ying ; Cho, Junsic ; Chan, Ting-Shan ; Ha, Yang ; Haw, Shu-Chih ; Kao, Cheng-Wei ; Wang, Ziyi ; Lei, Jia ; Ju, Min ; Tang, Jiayi ; Liu, Tong ; Zhao, Siyuan ; Dai, Yawen ; Baron-Wiechec, Aleksandra ; Chen, Fu-Rong ; Wang, Wenxiong ; Choi, Chang Hyuck ; Shao, Zongping ; Ni, Meng</creator><creatorcontrib>Wang, Jian ; Zhang, Yunze ; Wang, Ying ; Cho, Junsic ; Chan, Ting-Shan ; Ha, Yang ; Haw, Shu-Chih ; Kao, Cheng-Wei ; Wang, Ziyi ; Lei, Jia ; Ju, Min ; Tang, Jiayi ; Liu, Tong ; Zhao, Siyuan ; Dai, Yawen ; Baron-Wiechec, Aleksandra ; Chen, Fu-Rong ; Wang, Wenxiong ; Choi, Chang Hyuck ; Shao, Zongping ; Ni, Meng</creatorcontrib><description>Developing noble metal-free electrocatalysts (NMFEs) for the oxygen evolution reaction (OER) is tremendously challenging in acid. Despite extensive research efforts, few reported NMFEs can compete with Ru/Ir oxides for acidic OERs. Here, we report a heterostructure-engineering method to break the activity-stability limit of OER electrocatalysts and yield a noble-metal-free oxide that competes with RuO 2 in terms of OER specific activity and stability in acid. Via a set of correlative operando characterization techniques, heterostructured Co 3 O 4 /MnO 2 suppressed the in situ reconstruction of Co 3 O 4 and MnO 2 , and mitigated the electrochemical cycling-accelerated catalyst leaching, thus improving the acidic OER stability. Moreover, first-principles calculations supported that the synergy of Co and Mn in Co 3 O 4 /MnO 2 lowered the theoretical OER overpotentials. The optimized Co 3 O 4 /MnO 2 achieved an activity of 10 mA cm −2 at 319 ± 1.2 mV overpotential, and it demonstrated low degradation during the varying-current stability test (up to 200 mA cm −2 ) for 100 hours, making it among the best NMFEs for acidic OERs. Moreover, the promising performance of Co 3 O 4 /MnO 2 as the anodic catalyst was also validated in a proton-conducting membrane water electrolysis cell. This work breaks the activity-stability trade-off of noble metal-free OER electrocatalysts and yields a record performance in acid.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/d4ee00189c</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Acidic oxides ; Catalysts ; Cobalt oxides ; Competition ; Electrocatalysts ; Electrochemistry ; Electrolysis ; First principles ; Heterostructures ; In situ leaching ; Leaching ; Manganese dioxide ; Noble metals ; Oxygen evolution reactions ; Stability tests</subject><ispartof>Energy &amp; environmental science, 2024-08, Vol.17 (16), p.5972-5983</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c170t-5c62603ee2705278a3729935eaa8046417ae89ead3a083d4ce6975c80e05ed023</cites><orcidid>0000-0001-5310-4039 ; 0000-0001-9033-0158 ; 0000-0002-6800-0467 ; 0000-0002-2231-6116 ; 0000-0001-5684-8420 ; 0000-0002-4875-0287 ; 0000-0002-4538-4218 ; 0000-0001-9458-6679</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Zhang, Yunze</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>Cho, Junsic</creatorcontrib><creatorcontrib>Chan, Ting-Shan</creatorcontrib><creatorcontrib>Ha, Yang</creatorcontrib><creatorcontrib>Haw, Shu-Chih</creatorcontrib><creatorcontrib>Kao, Cheng-Wei</creatorcontrib><creatorcontrib>Wang, Ziyi</creatorcontrib><creatorcontrib>Lei, Jia</creatorcontrib><creatorcontrib>Ju, Min</creatorcontrib><creatorcontrib>Tang, Jiayi</creatorcontrib><creatorcontrib>Liu, Tong</creatorcontrib><creatorcontrib>Zhao, Siyuan</creatorcontrib><creatorcontrib>Dai, Yawen</creatorcontrib><creatorcontrib>Baron-Wiechec, Aleksandra</creatorcontrib><creatorcontrib>Chen, Fu-Rong</creatorcontrib><creatorcontrib>Wang, Wenxiong</creatorcontrib><creatorcontrib>Choi, Chang Hyuck</creatorcontrib><creatorcontrib>Shao, Zongping</creatorcontrib><creatorcontrib>Ni, Meng</creatorcontrib><title>Heterostructure boosts a noble-metal-free oxygen-evolving electrocatalyst in acid</title><title>Energy &amp; environmental science</title><description>Developing noble metal-free electrocatalysts (NMFEs) for the oxygen evolution reaction (OER) is tremendously challenging in acid. Despite extensive research efforts, few reported NMFEs can compete with Ru/Ir oxides for acidic OERs. Here, we report a heterostructure-engineering method to break the activity-stability limit of OER electrocatalysts and yield a noble-metal-free oxide that competes with RuO 2 in terms of OER specific activity and stability in acid. Via a set of correlative operando characterization techniques, heterostructured Co 3 O 4 /MnO 2 suppressed the in situ reconstruction of Co 3 O 4 and MnO 2 , and mitigated the electrochemical cycling-accelerated catalyst leaching, thus improving the acidic OER stability. Moreover, first-principles calculations supported that the synergy of Co and Mn in Co 3 O 4 /MnO 2 lowered the theoretical OER overpotentials. The optimized Co 3 O 4 /MnO 2 achieved an activity of 10 mA cm −2 at 319 ± 1.2 mV overpotential, and it demonstrated low degradation during the varying-current stability test (up to 200 mA cm −2 ) for 100 hours, making it among the best NMFEs for acidic OERs. Moreover, the promising performance of Co 3 O 4 /MnO 2 as the anodic catalyst was also validated in a proton-conducting membrane water electrolysis cell. This work breaks the activity-stability trade-off of noble metal-free OER electrocatalysts and yields a record performance in acid.</description><subject>Acidic oxides</subject><subject>Catalysts</subject><subject>Cobalt oxides</subject><subject>Competition</subject><subject>Electrocatalysts</subject><subject>Electrochemistry</subject><subject>Electrolysis</subject><subject>First principles</subject><subject>Heterostructures</subject><subject>In situ leaching</subject><subject>Leaching</subject><subject>Manganese dioxide</subject><subject>Noble metals</subject><subject>Oxygen evolution reactions</subject><subject>Stability tests</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpF0E1LAzEQBuAgCtbqxbuw4E2ITpLN11FqtUJBBD0vaXZatmw3NcmK_feu1o_TzMDDDPMScs7gmoGwN3WJCMCM9QdkxLQsqdSgDn97ZfkxOUlpDaA4aDsizzPMGEPKsfe5j1gswjCkwhVdWLRIN5hdS5cRsQgfuxV2FN9D-950qwJb9DkG7waxS7lousL5pj4lR0vXJjz7qWPyej99mczo_OnhcXI7p55pyFR6xRUIRK5Bcm2c0NxaIdE5A6UqmXZoLLpaODCiLj0qq6U3gCCxBi7G5HK_dxvDW48pV-vQx244WQmwnFkulBnU1V754ckUcVltY7NxcVcxqL4iq-7K6fQ7ssmAL_Y4Jv_n_iMVn8eEaEM</recordid><startdate>20240813</startdate><enddate>20240813</enddate><creator>Wang, Jian</creator><creator>Zhang, Yunze</creator><creator>Wang, Ying</creator><creator>Cho, Junsic</creator><creator>Chan, Ting-Shan</creator><creator>Ha, Yang</creator><creator>Haw, Shu-Chih</creator><creator>Kao, Cheng-Wei</creator><creator>Wang, Ziyi</creator><creator>Lei, Jia</creator><creator>Ju, Min</creator><creator>Tang, Jiayi</creator><creator>Liu, Tong</creator><creator>Zhao, Siyuan</creator><creator>Dai, Yawen</creator><creator>Baron-Wiechec, Aleksandra</creator><creator>Chen, Fu-Rong</creator><creator>Wang, Wenxiong</creator><creator>Choi, Chang Hyuck</creator><creator>Shao, Zongping</creator><creator>Ni, Meng</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-5310-4039</orcidid><orcidid>https://orcid.org/0000-0001-9033-0158</orcidid><orcidid>https://orcid.org/0000-0002-6800-0467</orcidid><orcidid>https://orcid.org/0000-0002-2231-6116</orcidid><orcidid>https://orcid.org/0000-0001-5684-8420</orcidid><orcidid>https://orcid.org/0000-0002-4875-0287</orcidid><orcidid>https://orcid.org/0000-0002-4538-4218</orcidid><orcidid>https://orcid.org/0000-0001-9458-6679</orcidid></search><sort><creationdate>20240813</creationdate><title>Heterostructure boosts a noble-metal-free oxygen-evolving electrocatalyst in acid</title><author>Wang, Jian ; Zhang, Yunze ; Wang, Ying ; Cho, Junsic ; Chan, Ting-Shan ; Ha, Yang ; Haw, Shu-Chih ; Kao, Cheng-Wei ; Wang, Ziyi ; Lei, Jia ; Ju, Min ; Tang, Jiayi ; Liu, Tong ; Zhao, Siyuan ; Dai, Yawen ; Baron-Wiechec, Aleksandra ; Chen, Fu-Rong ; Wang, Wenxiong ; Choi, Chang Hyuck ; Shao, Zongping ; Ni, Meng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c170t-5c62603ee2705278a3729935eaa8046417ae89ead3a083d4ce6975c80e05ed023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acidic oxides</topic><topic>Catalysts</topic><topic>Cobalt oxides</topic><topic>Competition</topic><topic>Electrocatalysts</topic><topic>Electrochemistry</topic><topic>Electrolysis</topic><topic>First principles</topic><topic>Heterostructures</topic><topic>In situ leaching</topic><topic>Leaching</topic><topic>Manganese dioxide</topic><topic>Noble metals</topic><topic>Oxygen evolution reactions</topic><topic>Stability tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Zhang, Yunze</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>Cho, Junsic</creatorcontrib><creatorcontrib>Chan, Ting-Shan</creatorcontrib><creatorcontrib>Ha, Yang</creatorcontrib><creatorcontrib>Haw, Shu-Chih</creatorcontrib><creatorcontrib>Kao, Cheng-Wei</creatorcontrib><creatorcontrib>Wang, Ziyi</creatorcontrib><creatorcontrib>Lei, Jia</creatorcontrib><creatorcontrib>Ju, Min</creatorcontrib><creatorcontrib>Tang, Jiayi</creatorcontrib><creatorcontrib>Liu, Tong</creatorcontrib><creatorcontrib>Zhao, Siyuan</creatorcontrib><creatorcontrib>Dai, Yawen</creatorcontrib><creatorcontrib>Baron-Wiechec, Aleksandra</creatorcontrib><creatorcontrib>Chen, Fu-Rong</creatorcontrib><creatorcontrib>Wang, Wenxiong</creatorcontrib><creatorcontrib>Choi, Chang Hyuck</creatorcontrib><creatorcontrib>Shao, Zongping</creatorcontrib><creatorcontrib>Ni, Meng</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jian</au><au>Zhang, Yunze</au><au>Wang, Ying</au><au>Cho, Junsic</au><au>Chan, Ting-Shan</au><au>Ha, Yang</au><au>Haw, Shu-Chih</au><au>Kao, Cheng-Wei</au><au>Wang, Ziyi</au><au>Lei, Jia</au><au>Ju, Min</au><au>Tang, Jiayi</au><au>Liu, Tong</au><au>Zhao, Siyuan</au><au>Dai, Yawen</au><au>Baron-Wiechec, Aleksandra</au><au>Chen, Fu-Rong</au><au>Wang, Wenxiong</au><au>Choi, Chang Hyuck</au><au>Shao, Zongping</au><au>Ni, Meng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterostructure boosts a noble-metal-free oxygen-evolving electrocatalyst in acid</atitle><jtitle>Energy &amp; environmental science</jtitle><date>2024-08-13</date><risdate>2024</risdate><volume>17</volume><issue>16</issue><spage>5972</spage><epage>5983</epage><pages>5972-5983</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Developing noble metal-free electrocatalysts (NMFEs) for the oxygen evolution reaction (OER) is tremendously challenging in acid. Despite extensive research efforts, few reported NMFEs can compete with Ru/Ir oxides for acidic OERs. Here, we report a heterostructure-engineering method to break the activity-stability limit of OER electrocatalysts and yield a noble-metal-free oxide that competes with RuO 2 in terms of OER specific activity and stability in acid. Via a set of correlative operando characterization techniques, heterostructured Co 3 O 4 /MnO 2 suppressed the in situ reconstruction of Co 3 O 4 and MnO 2 , and mitigated the electrochemical cycling-accelerated catalyst leaching, thus improving the acidic OER stability. Moreover, first-principles calculations supported that the synergy of Co and Mn in Co 3 O 4 /MnO 2 lowered the theoretical OER overpotentials. The optimized Co 3 O 4 /MnO 2 achieved an activity of 10 mA cm −2 at 319 ± 1.2 mV overpotential, and it demonstrated low degradation during the varying-current stability test (up to 200 mA cm −2 ) for 100 hours, making it among the best NMFEs for acidic OERs. Moreover, the promising performance of Co 3 O 4 /MnO 2 as the anodic catalyst was also validated in a proton-conducting membrane water electrolysis cell. This work breaks the activity-stability trade-off of noble metal-free OER electrocatalysts and yields a record performance in acid.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4ee00189c</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5310-4039</orcidid><orcidid>https://orcid.org/0000-0001-9033-0158</orcidid><orcidid>https://orcid.org/0000-0002-6800-0467</orcidid><orcidid>https://orcid.org/0000-0002-2231-6116</orcidid><orcidid>https://orcid.org/0000-0001-5684-8420</orcidid><orcidid>https://orcid.org/0000-0002-4875-0287</orcidid><orcidid>https://orcid.org/0000-0002-4538-4218</orcidid><orcidid>https://orcid.org/0000-0001-9458-6679</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2024-08, Vol.17 (16), p.5972-5983
issn 1754-5692
1754-5706
language eng
recordid cdi_rsc_primary_d4ee00189c
source Royal Society Of Chemistry Journals 2008-
subjects Acidic oxides
Catalysts
Cobalt oxides
Competition
Electrocatalysts
Electrochemistry
Electrolysis
First principles
Heterostructures
In situ leaching
Leaching
Manganese dioxide
Noble metals
Oxygen evolution reactions
Stability tests
title Heterostructure boosts a noble-metal-free oxygen-evolving electrocatalyst in acid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T19%3A49%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterostructure%20boosts%20a%20noble-metal-free%20oxygen-evolving%20electrocatalyst%20in%20acid&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Wang,%20Jian&rft.date=2024-08-13&rft.volume=17&rft.issue=16&rft.spage=5972&rft.epage=5983&rft.pages=5972-5983&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/d4ee00189c&rft_dat=%3Cproquest_rsc_p%3E3092192368%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092192368&rft_id=info:pmid/&rfr_iscdi=true