Controlling excited-state dynamics protonation of naphthalene-based azo dyes

Azo dyes are a class of photoactive dyes that constitute a major focus of chemical research due to their applications in numerous industrial functions. This work explores the impact of protonation on the photophysics of four naphthalene-based azo dyes. The p K a value of the dyes increases proportio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2024-04, Vol.26 (14), p.184-1813
Hauptverfasser: Martin, Shea M, Hamburger, Robert C, Huang, Tao, Fredin, Lisa A, Young, Elizabeth R
Format: Artikel
Sprache:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1813
container_issue 14
container_start_page 184
container_title Physical chemistry chemical physics : PCCP
container_volume 26
creator Martin, Shea M
Hamburger, Robert C
Huang, Tao
Fredin, Lisa A
Young, Elizabeth R
description Azo dyes are a class of photoactive dyes that constitute a major focus of chemical research due to their applications in numerous industrial functions. This work explores the impact of protonation on the photophysics of four naphthalene-based azo dyes. The p K a value of the dyes increases proportionally with decreasing Hammett parameter of p -phenyl substituents from 8.1 (R = -H, σ = 0) to 10.6 (R = -NMe2, σ = -0.83) in acetonitrile. Protonation of the dyes shuts down the steady-state photoisomerization observed in the unprotonated moieties. Fluorescence measurements reveal a lower quantum yield with more electron-donating p -phenyl substituents, with overall lower fluorescence quantum yields than the unprotonated dyes. Transient absorption spectroscopy reveals four excited-state lifetimes (
doi_str_mv 10.1039/d4cp00242c
format Article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_d4cp00242c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d4cp00242c</sourcerecordid><originalsourceid>FETCH-rsc_primary_d4cp00242c3</originalsourceid><addsrcrecordid>eNqFjr0OwiAYRYnRxN_F3YQXqELBaudG4-Do3nwCtRgKBBisT6-D0dHpnuSc4SK0pGRNCSs3kgtPSM5zMUATyguWlWTPh1_eFWM0jfFOCKFbyiboXDmbgjNG2xtWD6GTkllMkBSWvYVOi4h9cMlZSNpZ7BpswbepBaOsyq4QlcTwdO9axTkaNWCiWnx2hlbHw6U6ZSGK2gfdQejr30X2z78AVnJAJw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Controlling excited-state dynamics protonation of naphthalene-based azo dyes</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Martin, Shea M ; Hamburger, Robert C ; Huang, Tao ; Fredin, Lisa A ; Young, Elizabeth R</creator><creatorcontrib>Martin, Shea M ; Hamburger, Robert C ; Huang, Tao ; Fredin, Lisa A ; Young, Elizabeth R</creatorcontrib><description>Azo dyes are a class of photoactive dyes that constitute a major focus of chemical research due to their applications in numerous industrial functions. This work explores the impact of protonation on the photophysics of four naphthalene-based azo dyes. The p K a value of the dyes increases proportionally with decreasing Hammett parameter of p -phenyl substituents from 8.1 (R = -H, σ = 0) to 10.6 (R = -NMe2, σ = -0.83) in acetonitrile. Protonation of the dyes shuts down the steady-state photoisomerization observed in the unprotonated moieties. Fluorescence measurements reveal a lower quantum yield with more electron-donating p -phenyl substituents, with overall lower fluorescence quantum yields than the unprotonated dyes. Transient absorption spectroscopy reveals four excited-state lifetimes (&lt;1 ps, ∼3 ps, ∼13 ps, and ∼200 ps) exhibiting faster excited-state dynamics than observed in the unprotonated forms (for 1-3 : 0.7-1.5 ps, ∼3-4 ps, 20-40 ps, 20-300 min; for 4 : 0.7 ps, 4.8 ps, 17.8 ps, 40 ps, 8 min). Time-dependent density functional theory (TDDFT) elucidates the reason for the loss of isomerization in the protonated dyes, revealing a significant change in the lowest excited state potential energy nature and landscape upon protonation. Protonation impedes relaxation along the typical rotational and inversion isomerization axes, locking the dyes into a trans -configuration that rapidly decays back to the ground state. Azo dyes are a class of photoactive dyes that constitute a major focus of chemical research due to their applications in numerous industrial functions.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d4cp00242c</identifier><ispartof>Physical chemistry chemical physics : PCCP, 2024-04, Vol.26 (14), p.184-1813</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Martin, Shea M</creatorcontrib><creatorcontrib>Hamburger, Robert C</creatorcontrib><creatorcontrib>Huang, Tao</creatorcontrib><creatorcontrib>Fredin, Lisa A</creatorcontrib><creatorcontrib>Young, Elizabeth R</creatorcontrib><title>Controlling excited-state dynamics protonation of naphthalene-based azo dyes</title><title>Physical chemistry chemical physics : PCCP</title><description>Azo dyes are a class of photoactive dyes that constitute a major focus of chemical research due to their applications in numerous industrial functions. This work explores the impact of protonation on the photophysics of four naphthalene-based azo dyes. The p K a value of the dyes increases proportionally with decreasing Hammett parameter of p -phenyl substituents from 8.1 (R = -H, σ = 0) to 10.6 (R = -NMe2, σ = -0.83) in acetonitrile. Protonation of the dyes shuts down the steady-state photoisomerization observed in the unprotonated moieties. Fluorescence measurements reveal a lower quantum yield with more electron-donating p -phenyl substituents, with overall lower fluorescence quantum yields than the unprotonated dyes. Transient absorption spectroscopy reveals four excited-state lifetimes (&lt;1 ps, ∼3 ps, ∼13 ps, and ∼200 ps) exhibiting faster excited-state dynamics than observed in the unprotonated forms (for 1-3 : 0.7-1.5 ps, ∼3-4 ps, 20-40 ps, 20-300 min; for 4 : 0.7 ps, 4.8 ps, 17.8 ps, 40 ps, 8 min). Time-dependent density functional theory (TDDFT) elucidates the reason for the loss of isomerization in the protonated dyes, revealing a significant change in the lowest excited state potential energy nature and landscape upon protonation. Protonation impedes relaxation along the typical rotational and inversion isomerization axes, locking the dyes into a trans -configuration that rapidly decays back to the ground state. Azo dyes are a class of photoactive dyes that constitute a major focus of chemical research due to their applications in numerous industrial functions.</description><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFjr0OwiAYRYnRxN_F3YQXqELBaudG4-Do3nwCtRgKBBisT6-D0dHpnuSc4SK0pGRNCSs3kgtPSM5zMUATyguWlWTPh1_eFWM0jfFOCKFbyiboXDmbgjNG2xtWD6GTkllMkBSWvYVOi4h9cMlZSNpZ7BpswbepBaOsyq4QlcTwdO9axTkaNWCiWnx2hlbHw6U6ZSGK2gfdQejr30X2z78AVnJAJw</recordid><startdate>20240403</startdate><enddate>20240403</enddate><creator>Martin, Shea M</creator><creator>Hamburger, Robert C</creator><creator>Huang, Tao</creator><creator>Fredin, Lisa A</creator><creator>Young, Elizabeth R</creator><scope/></search><sort><creationdate>20240403</creationdate><title>Controlling excited-state dynamics protonation of naphthalene-based azo dyes</title><author>Martin, Shea M ; Hamburger, Robert C ; Huang, Tao ; Fredin, Lisa A ; Young, Elizabeth R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_d4cp00242c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martin, Shea M</creatorcontrib><creatorcontrib>Hamburger, Robert C</creatorcontrib><creatorcontrib>Huang, Tao</creatorcontrib><creatorcontrib>Fredin, Lisa A</creatorcontrib><creatorcontrib>Young, Elizabeth R</creatorcontrib><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martin, Shea M</au><au>Hamburger, Robert C</au><au>Huang, Tao</au><au>Fredin, Lisa A</au><au>Young, Elizabeth R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling excited-state dynamics protonation of naphthalene-based azo dyes</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2024-04-03</date><risdate>2024</risdate><volume>26</volume><issue>14</issue><spage>184</spage><epage>1813</epage><pages>184-1813</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Azo dyes are a class of photoactive dyes that constitute a major focus of chemical research due to their applications in numerous industrial functions. This work explores the impact of protonation on the photophysics of four naphthalene-based azo dyes. The p K a value of the dyes increases proportionally with decreasing Hammett parameter of p -phenyl substituents from 8.1 (R = -H, σ = 0) to 10.6 (R = -NMe2, σ = -0.83) in acetonitrile. Protonation of the dyes shuts down the steady-state photoisomerization observed in the unprotonated moieties. Fluorescence measurements reveal a lower quantum yield with more electron-donating p -phenyl substituents, with overall lower fluorescence quantum yields than the unprotonated dyes. Transient absorption spectroscopy reveals four excited-state lifetimes (&lt;1 ps, ∼3 ps, ∼13 ps, and ∼200 ps) exhibiting faster excited-state dynamics than observed in the unprotonated forms (for 1-3 : 0.7-1.5 ps, ∼3-4 ps, 20-40 ps, 20-300 min; for 4 : 0.7 ps, 4.8 ps, 17.8 ps, 40 ps, 8 min). Time-dependent density functional theory (TDDFT) elucidates the reason for the loss of isomerization in the protonated dyes, revealing a significant change in the lowest excited state potential energy nature and landscape upon protonation. Protonation impedes relaxation along the typical rotational and inversion isomerization axes, locking the dyes into a trans -configuration that rapidly decays back to the ground state. Azo dyes are a class of photoactive dyes that constitute a major focus of chemical research due to their applications in numerous industrial functions.</abstract><doi>10.1039/d4cp00242c</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2024-04, Vol.26 (14), p.184-1813
issn 1463-9076
1463-9084
language
recordid cdi_rsc_primary_d4cp00242c
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
title Controlling excited-state dynamics protonation of naphthalene-based azo dyes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T13%3A17%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20excited-state%20dynamics%20protonation%20of%20naphthalene-based%20azo%20dyes&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Martin,%20Shea%20M&rft.date=2024-04-03&rft.volume=26&rft.issue=14&rft.spage=184&rft.epage=1813&rft.pages=184-1813&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d4cp00242c&rft_dat=%3Crsc%3Ed4cp00242c%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true