Machine learning-guided investigation for a high-performance electrochromic device based on ammonium metatungstate-iron() chloride-heavy water electrochromic liquid

Electrochromic devices have been widely studied due to their ability to change transmittance under the application of electrical current. However, there is still a lack of an effective tool to guide the development of high-performance electrochromic devices. Here, we design a high-performance electr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2023-09, Vol.11 (37), p.12776-12784
Hauptverfasser: Kong, Sifan, Li, Muyun, Xiang, Yongqi, Wu, Yitong, Fan, Zhen, Yang, Huan, Cai, Qingyue, Zhang, Menglong, Zhang, Yong, Ning, Honglong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12784
container_issue 37
container_start_page 12776
container_title Journal of materials chemistry. C, Materials for optical and electronic devices
container_volume 11
creator Kong, Sifan
Li, Muyun
Xiang, Yongqi
Wu, Yitong
Fan, Zhen
Yang, Huan
Cai, Qingyue
Zhang, Menglong
Zhang, Yong
Ning, Honglong
description Electrochromic devices have been widely studied due to their ability to change transmittance under the application of electrical current. However, there is still a lack of an effective tool to guide the development of high-performance electrochromic devices. Here, we design a high-performance electrochromic device, which is composed of a mixed functional layer synthesized from ammonium metatungstate and iron( ii ) chloride in a heavy water solvent, with the aid of a multilayer perceptron (MLP) model. We first prepare 25 devices with different concentrations of ammonium metatungstate and iron( ii ) chloride, and use their transmittance modulation amplitude (Δ T ) current density data to train an MLP model. Then, this model is further used to guide the experimental fabrication of the best-performing device. The fabricated device exhibits high Δ T (74%), rapid response time ( t c = 6.5 s and t b = 13.5 s), and long cycling life (>1000), which represents a breakthrough in the field of inorganic all-liquid electrochromic devices. Our study showcases a new paradigm of developing high-performance electrochromic devices by using machine learning. Electrochromic devices have been widely studied due to their ability to change transmittance under the application of electrical current.
doi_str_mv 10.1039/d3tc02522e
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d3tc02522e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2869634729</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-4f7deae50ac663ab4aae2f9a1d560bdb9a0c8ddb0f4355acab63d495f93780283</originalsourceid><addsrcrecordid>eNpdkd9LwzAQx4soOOZefBcCvqhQTZO2ax9lzh8w8WU-l2tybTPaZEvayf4f_1Cjkwnm5ZLL576XyzcIziN6G1Ge30neC8oSxvAoGDGa0HCa8Pj4sGfpaTBxbkX9yqI0S_NR8PkKolEaSYtgtdJ1WA9KoiRKb9H1qoZeGU0qYwmQRtVNuEbrTx1ogQRbFL01orGmU4JI3CqfLcF5AV8FXWe0GjrSYQ_9oGvnA4bKGn11TUTTGut7hQ3Cdkc-_JX9r9iqjX_OWXBSQetw8hvHwfvjfDl7DhdvTy-z-0UoWBb1YVxNJQImFESacihjAGRVDpFMUlrKMgcqMilLWsU8SUBAmXIZ50mV82lGWcbHweVed23NZvDjFyszWO1bFsz_VsrjKcs9dbOnhDXOWayKtVUd2F0R0eLbiOKBL2c_Rsw9fLGHrRMH7s8o_gXGdIo2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2869634729</pqid></control><display><type>article</type><title>Machine learning-guided investigation for a high-performance electrochromic device based on ammonium metatungstate-iron() chloride-heavy water electrochromic liquid</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Kong, Sifan ; Li, Muyun ; Xiang, Yongqi ; Wu, Yitong ; Fan, Zhen ; Yang, Huan ; Cai, Qingyue ; Zhang, Menglong ; Zhang, Yong ; Ning, Honglong</creator><creatorcontrib>Kong, Sifan ; Li, Muyun ; Xiang, Yongqi ; Wu, Yitong ; Fan, Zhen ; Yang, Huan ; Cai, Qingyue ; Zhang, Menglong ; Zhang, Yong ; Ning, Honglong</creatorcontrib><description>Electrochromic devices have been widely studied due to their ability to change transmittance under the application of electrical current. However, there is still a lack of an effective tool to guide the development of high-performance electrochromic devices. Here, we design a high-performance electrochromic device, which is composed of a mixed functional layer synthesized from ammonium metatungstate and iron( ii ) chloride in a heavy water solvent, with the aid of a multilayer perceptron (MLP) model. We first prepare 25 devices with different concentrations of ammonium metatungstate and iron( ii ) chloride, and use their transmittance modulation amplitude (Δ T ) current density data to train an MLP model. Then, this model is further used to guide the experimental fabrication of the best-performing device. The fabricated device exhibits high Δ T (74%), rapid response time ( t c = 6.5 s and t b = 13.5 s), and long cycling life (&gt;1000), which represents a breakthrough in the field of inorganic all-liquid electrochromic devices. Our study showcases a new paradigm of developing high-performance electrochromic devices by using machine learning. Electrochromic devices have been widely studied due to their ability to change transmittance under the application of electrical current.</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/d3tc02522e</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Devices ; Electrochromic cells ; Electrochromism ; Heavy water ; Iron chlorides ; Machine learning ; Multilayer perceptrons ; Transmittance</subject><ispartof>Journal of materials chemistry. C, Materials for optical and electronic devices, 2023-09, Vol.11 (37), p.12776-12784</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-4f7deae50ac663ab4aae2f9a1d560bdb9a0c8ddb0f4355acab63d495f93780283</citedby><cites>FETCH-LOGICAL-c281t-4f7deae50ac663ab4aae2f9a1d560bdb9a0c8ddb0f4355acab63d495f93780283</cites><orcidid>0000-0001-7718-5945 ; 0000-0002-1756-641X ; 0000-0001-9518-5738 ; 0000-0003-0011-1379 ; 0000-0003-2874-4311</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Kong, Sifan</creatorcontrib><creatorcontrib>Li, Muyun</creatorcontrib><creatorcontrib>Xiang, Yongqi</creatorcontrib><creatorcontrib>Wu, Yitong</creatorcontrib><creatorcontrib>Fan, Zhen</creatorcontrib><creatorcontrib>Yang, Huan</creatorcontrib><creatorcontrib>Cai, Qingyue</creatorcontrib><creatorcontrib>Zhang, Menglong</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Ning, Honglong</creatorcontrib><title>Machine learning-guided investigation for a high-performance electrochromic device based on ammonium metatungstate-iron() chloride-heavy water electrochromic liquid</title><title>Journal of materials chemistry. C, Materials for optical and electronic devices</title><description>Electrochromic devices have been widely studied due to their ability to change transmittance under the application of electrical current. However, there is still a lack of an effective tool to guide the development of high-performance electrochromic devices. Here, we design a high-performance electrochromic device, which is composed of a mixed functional layer synthesized from ammonium metatungstate and iron( ii ) chloride in a heavy water solvent, with the aid of a multilayer perceptron (MLP) model. We first prepare 25 devices with different concentrations of ammonium metatungstate and iron( ii ) chloride, and use their transmittance modulation amplitude (Δ T ) current density data to train an MLP model. Then, this model is further used to guide the experimental fabrication of the best-performing device. The fabricated device exhibits high Δ T (74%), rapid response time ( t c = 6.5 s and t b = 13.5 s), and long cycling life (&gt;1000), which represents a breakthrough in the field of inorganic all-liquid electrochromic devices. Our study showcases a new paradigm of developing high-performance electrochromic devices by using machine learning. Electrochromic devices have been widely studied due to their ability to change transmittance under the application of electrical current.</description><subject>Devices</subject><subject>Electrochromic cells</subject><subject>Electrochromism</subject><subject>Heavy water</subject><subject>Iron chlorides</subject><subject>Machine learning</subject><subject>Multilayer perceptrons</subject><subject>Transmittance</subject><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkd9LwzAQx4soOOZefBcCvqhQTZO2ax9lzh8w8WU-l2tybTPaZEvayf4f_1Cjkwnm5ZLL576XyzcIziN6G1Ge30neC8oSxvAoGDGa0HCa8Pj4sGfpaTBxbkX9yqI0S_NR8PkKolEaSYtgtdJ1WA9KoiRKb9H1qoZeGU0qYwmQRtVNuEbrTx1ogQRbFL01orGmU4JI3CqfLcF5AV8FXWe0GjrSYQ_9oGvnA4bKGn11TUTTGut7hQ3Cdkc-_JX9r9iqjX_OWXBSQetw8hvHwfvjfDl7DhdvTy-z-0UoWBb1YVxNJQImFESacihjAGRVDpFMUlrKMgcqMilLWsU8SUBAmXIZ50mV82lGWcbHweVed23NZvDjFyszWO1bFsz_VsrjKcs9dbOnhDXOWayKtVUd2F0R0eLbiOKBL2c_Rsw9fLGHrRMH7s8o_gXGdIo2</recordid><startdate>20230928</startdate><enddate>20230928</enddate><creator>Kong, Sifan</creator><creator>Li, Muyun</creator><creator>Xiang, Yongqi</creator><creator>Wu, Yitong</creator><creator>Fan, Zhen</creator><creator>Yang, Huan</creator><creator>Cai, Qingyue</creator><creator>Zhang, Menglong</creator><creator>Zhang, Yong</creator><creator>Ning, Honglong</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7718-5945</orcidid><orcidid>https://orcid.org/0000-0002-1756-641X</orcidid><orcidid>https://orcid.org/0000-0001-9518-5738</orcidid><orcidid>https://orcid.org/0000-0003-0011-1379</orcidid><orcidid>https://orcid.org/0000-0003-2874-4311</orcidid></search><sort><creationdate>20230928</creationdate><title>Machine learning-guided investigation for a high-performance electrochromic device based on ammonium metatungstate-iron() chloride-heavy water electrochromic liquid</title><author>Kong, Sifan ; Li, Muyun ; Xiang, Yongqi ; Wu, Yitong ; Fan, Zhen ; Yang, Huan ; Cai, Qingyue ; Zhang, Menglong ; Zhang, Yong ; Ning, Honglong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-4f7deae50ac663ab4aae2f9a1d560bdb9a0c8ddb0f4355acab63d495f93780283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Devices</topic><topic>Electrochromic cells</topic><topic>Electrochromism</topic><topic>Heavy water</topic><topic>Iron chlorides</topic><topic>Machine learning</topic><topic>Multilayer perceptrons</topic><topic>Transmittance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kong, Sifan</creatorcontrib><creatorcontrib>Li, Muyun</creatorcontrib><creatorcontrib>Xiang, Yongqi</creatorcontrib><creatorcontrib>Wu, Yitong</creatorcontrib><creatorcontrib>Fan, Zhen</creatorcontrib><creatorcontrib>Yang, Huan</creatorcontrib><creatorcontrib>Cai, Qingyue</creatorcontrib><creatorcontrib>Zhang, Menglong</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Ning, Honglong</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kong, Sifan</au><au>Li, Muyun</au><au>Xiang, Yongqi</au><au>Wu, Yitong</au><au>Fan, Zhen</au><au>Yang, Huan</au><au>Cai, Qingyue</au><au>Zhang, Menglong</au><au>Zhang, Yong</au><au>Ning, Honglong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning-guided investigation for a high-performance electrochromic device based on ammonium metatungstate-iron() chloride-heavy water electrochromic liquid</atitle><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle><date>2023-09-28</date><risdate>2023</risdate><volume>11</volume><issue>37</issue><spage>12776</spage><epage>12784</epage><pages>12776-12784</pages><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>Electrochromic devices have been widely studied due to their ability to change transmittance under the application of electrical current. However, there is still a lack of an effective tool to guide the development of high-performance electrochromic devices. Here, we design a high-performance electrochromic device, which is composed of a mixed functional layer synthesized from ammonium metatungstate and iron( ii ) chloride in a heavy water solvent, with the aid of a multilayer perceptron (MLP) model. We first prepare 25 devices with different concentrations of ammonium metatungstate and iron( ii ) chloride, and use their transmittance modulation amplitude (Δ T ) current density data to train an MLP model. Then, this model is further used to guide the experimental fabrication of the best-performing device. The fabricated device exhibits high Δ T (74%), rapid response time ( t c = 6.5 s and t b = 13.5 s), and long cycling life (&gt;1000), which represents a breakthrough in the field of inorganic all-liquid electrochromic devices. Our study showcases a new paradigm of developing high-performance electrochromic devices by using machine learning. Electrochromic devices have been widely studied due to their ability to change transmittance under the application of electrical current.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3tc02522e</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7718-5945</orcidid><orcidid>https://orcid.org/0000-0002-1756-641X</orcidid><orcidid>https://orcid.org/0000-0001-9518-5738</orcidid><orcidid>https://orcid.org/0000-0003-0011-1379</orcidid><orcidid>https://orcid.org/0000-0003-2874-4311</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7526
ispartof Journal of materials chemistry. C, Materials for optical and electronic devices, 2023-09, Vol.11 (37), p.12776-12784
issn 2050-7526
2050-7534
language eng
recordid cdi_rsc_primary_d3tc02522e
source Royal Society Of Chemistry Journals 2008-
subjects Devices
Electrochromic cells
Electrochromism
Heavy water
Iron chlorides
Machine learning
Multilayer perceptrons
Transmittance
title Machine learning-guided investigation for a high-performance electrochromic device based on ammonium metatungstate-iron() chloride-heavy water electrochromic liquid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T19%3A58%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning-guided%20investigation%20for%20a%20high-performance%20electrochromic%20device%20based%20on%20ammonium%20metatungstate-iron()%20chloride-heavy%20water%20electrochromic%20liquid&rft.jtitle=Journal%20of%20materials%20chemistry.%20C,%20Materials%20for%20optical%20and%20electronic%20devices&rft.au=Kong,%20Sifan&rft.date=2023-09-28&rft.volume=11&rft.issue=37&rft.spage=12776&rft.epage=12784&rft.pages=12776-12784&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/d3tc02522e&rft_dat=%3Cproquest_rsc_p%3E2869634729%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2869634729&rft_id=info:pmid/&rfr_iscdi=true