Edge sites enriched vanadium doped MoS/RGO composites as highly selective room temperature ammonia gas sensors with ppb level detection

The unparalleled physical and chemical properties of 2D transition metal dichalcogenides (TMDCs) render them the potential to be next-generation high-performance gas sensors. Herein, we report the fabrication of vanadium-doped MoS 2 /RGO (MG) nanocomposite gas sensors with substantial ammonia sensin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2023-11, Vol.11 (46), p.16333-16345
Hauptverfasser: S P, Linto Sibi, M, Rajkumar, Govindharaj, Kamaraj, J, Mobika, V, Nithya Priya, Ramasamy Thangavelu, Rajendra Kumar
Format: Artikel
Sprache:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16345
container_issue 46
container_start_page 16333
container_title Journal of materials chemistry. C, Materials for optical and electronic devices
container_volume 11
creator S P, Linto Sibi
M, Rajkumar
Govindharaj, Kamaraj
J, Mobika
V, Nithya Priya
Ramasamy Thangavelu, Rajendra Kumar
description The unparalleled physical and chemical properties of 2D transition metal dichalcogenides (TMDCs) render them the potential to be next-generation high-performance gas sensors. Herein, we report the fabrication of vanadium-doped MoS 2 /RGO (MG) nanocomposite gas sensors with substantial ammonia sensing traits at room temperature via an in situ hydrothermal method. The characterization results reveal that the incorporation of vanadium dopants into the host lattice triggered more active edge sites and augmented charge carrier transport across the heterojunctions. The as-formulated hierarchical structured gas sensors (V5) with an optimal vanadium doping concentration of 5 at% exhibited a high selective response of 21.8% towards 50 ppm of ammonia gas at room temperature and a pronounced lowest detection limit of 600 ppb. The V5 gas sensor reflected a 21-fold enhancement in the gas sensing response towards 50 ppm ammonia relative to the pristine MoS 2 /RGO (MG). The changes attributed to the depletion layer of the p-n heterojunction formed by V@MoS 2 /RGO upon interaction with ammonia gas molecules and the influence of humidity on the sensing parameters were briefly discussed. The prepared V5 gas sensor proves to be a potential candidate for real-time sub ppb level detection of ammonia at room temperature. Ammonia sensing mechanism of vanadium doped MoS 2 /RGO composite.
doi_str_mv 10.1039/d3tc02192k
format Article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_d3tc02192k</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d3tc02192k</sourcerecordid><originalsourceid>FETCH-rsc_primary_d3tc02192k3</originalsourceid><addsrcrecordid>eNqFT7FOwzAUtBBIVLQLe6X3A6VOQtNmRgUWVAnYK9d-JG5tP8vPDeoX8NsEgWDklrvT3Q0nxHUhbwpZNXNTZS3LoikPZ2JUyoWcLRfV7fmvLutLMWHeywGrol7VzUh8rE2LwDYjA4ZkdYcGehWUsUcPhuJgn-hl_vywAU0-0ndVMXS27dwJGB3qbHuEROQho4-YVD4mBOU9BaugHdqMgSkxvNvcQYw7cNijA4P5a01hLC7elGOc_PCVmN6vX-8eZ4n1NibrVTpt_w5W_-WfQ91WaQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Edge sites enriched vanadium doped MoS/RGO composites as highly selective room temperature ammonia gas sensors with ppb level detection</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>S P, Linto Sibi ; M, Rajkumar ; Govindharaj, Kamaraj ; J, Mobika ; V, Nithya Priya ; Ramasamy Thangavelu, Rajendra Kumar</creator><creatorcontrib>S P, Linto Sibi ; M, Rajkumar ; Govindharaj, Kamaraj ; J, Mobika ; V, Nithya Priya ; Ramasamy Thangavelu, Rajendra Kumar</creatorcontrib><description>The unparalleled physical and chemical properties of 2D transition metal dichalcogenides (TMDCs) render them the potential to be next-generation high-performance gas sensors. Herein, we report the fabrication of vanadium-doped MoS 2 /RGO (MG) nanocomposite gas sensors with substantial ammonia sensing traits at room temperature via an in situ hydrothermal method. The characterization results reveal that the incorporation of vanadium dopants into the host lattice triggered more active edge sites and augmented charge carrier transport across the heterojunctions. The as-formulated hierarchical structured gas sensors (V5) with an optimal vanadium doping concentration of 5 at% exhibited a high selective response of 21.8% towards 50 ppm of ammonia gas at room temperature and a pronounced lowest detection limit of 600 ppb. The V5 gas sensor reflected a 21-fold enhancement in the gas sensing response towards 50 ppm ammonia relative to the pristine MoS 2 /RGO (MG). The changes attributed to the depletion layer of the p-n heterojunction formed by V@MoS 2 /RGO upon interaction with ammonia gas molecules and the influence of humidity on the sensing parameters were briefly discussed. The prepared V5 gas sensor proves to be a potential candidate for real-time sub ppb level detection of ammonia at room temperature. Ammonia sensing mechanism of vanadium doped MoS 2 /RGO composite.</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/d3tc02192k</identifier><ispartof>Journal of materials chemistry. C, Materials for optical and electronic devices, 2023-11, Vol.11 (46), p.16333-16345</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>S P, Linto Sibi</creatorcontrib><creatorcontrib>M, Rajkumar</creatorcontrib><creatorcontrib>Govindharaj, Kamaraj</creatorcontrib><creatorcontrib>J, Mobika</creatorcontrib><creatorcontrib>V, Nithya Priya</creatorcontrib><creatorcontrib>Ramasamy Thangavelu, Rajendra Kumar</creatorcontrib><title>Edge sites enriched vanadium doped MoS/RGO composites as highly selective room temperature ammonia gas sensors with ppb level detection</title><title>Journal of materials chemistry. C, Materials for optical and electronic devices</title><description>The unparalleled physical and chemical properties of 2D transition metal dichalcogenides (TMDCs) render them the potential to be next-generation high-performance gas sensors. Herein, we report the fabrication of vanadium-doped MoS 2 /RGO (MG) nanocomposite gas sensors with substantial ammonia sensing traits at room temperature via an in situ hydrothermal method. The characterization results reveal that the incorporation of vanadium dopants into the host lattice triggered more active edge sites and augmented charge carrier transport across the heterojunctions. The as-formulated hierarchical structured gas sensors (V5) with an optimal vanadium doping concentration of 5 at% exhibited a high selective response of 21.8% towards 50 ppm of ammonia gas at room temperature and a pronounced lowest detection limit of 600 ppb. The V5 gas sensor reflected a 21-fold enhancement in the gas sensing response towards 50 ppm ammonia relative to the pristine MoS 2 /RGO (MG). The changes attributed to the depletion layer of the p-n heterojunction formed by V@MoS 2 /RGO upon interaction with ammonia gas molecules and the influence of humidity on the sensing parameters were briefly discussed. The prepared V5 gas sensor proves to be a potential candidate for real-time sub ppb level detection of ammonia at room temperature. Ammonia sensing mechanism of vanadium doped MoS 2 /RGO composite.</description><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFT7FOwzAUtBBIVLQLe6X3A6VOQtNmRgUWVAnYK9d-JG5tP8vPDeoX8NsEgWDklrvT3Q0nxHUhbwpZNXNTZS3LoikPZ2JUyoWcLRfV7fmvLutLMWHeywGrol7VzUh8rE2LwDYjA4ZkdYcGehWUsUcPhuJgn-hl_vywAU0-0ndVMXS27dwJGB3qbHuEROQho4-YVD4mBOU9BaugHdqMgSkxvNvcQYw7cNijA4P5a01hLC7elGOc_PCVmN6vX-8eZ4n1NibrVTpt_w5W_-WfQ91WaQ</recordid><startdate>20231130</startdate><enddate>20231130</enddate><creator>S P, Linto Sibi</creator><creator>M, Rajkumar</creator><creator>Govindharaj, Kamaraj</creator><creator>J, Mobika</creator><creator>V, Nithya Priya</creator><creator>Ramasamy Thangavelu, Rajendra Kumar</creator><scope/></search><sort><creationdate>20231130</creationdate><title>Edge sites enriched vanadium doped MoS/RGO composites as highly selective room temperature ammonia gas sensors with ppb level detection</title><author>S P, Linto Sibi ; M, Rajkumar ; Govindharaj, Kamaraj ; J, Mobika ; V, Nithya Priya ; Ramasamy Thangavelu, Rajendra Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_d3tc02192k3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>S P, Linto Sibi</creatorcontrib><creatorcontrib>M, Rajkumar</creatorcontrib><creatorcontrib>Govindharaj, Kamaraj</creatorcontrib><creatorcontrib>J, Mobika</creatorcontrib><creatorcontrib>V, Nithya Priya</creatorcontrib><creatorcontrib>Ramasamy Thangavelu, Rajendra Kumar</creatorcontrib><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>S P, Linto Sibi</au><au>M, Rajkumar</au><au>Govindharaj, Kamaraj</au><au>J, Mobika</au><au>V, Nithya Priya</au><au>Ramasamy Thangavelu, Rajendra Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Edge sites enriched vanadium doped MoS/RGO composites as highly selective room temperature ammonia gas sensors with ppb level detection</atitle><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle><date>2023-11-30</date><risdate>2023</risdate><volume>11</volume><issue>46</issue><spage>16333</spage><epage>16345</epage><pages>16333-16345</pages><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>The unparalleled physical and chemical properties of 2D transition metal dichalcogenides (TMDCs) render them the potential to be next-generation high-performance gas sensors. Herein, we report the fabrication of vanadium-doped MoS 2 /RGO (MG) nanocomposite gas sensors with substantial ammonia sensing traits at room temperature via an in situ hydrothermal method. The characterization results reveal that the incorporation of vanadium dopants into the host lattice triggered more active edge sites and augmented charge carrier transport across the heterojunctions. The as-formulated hierarchical structured gas sensors (V5) with an optimal vanadium doping concentration of 5 at% exhibited a high selective response of 21.8% towards 50 ppm of ammonia gas at room temperature and a pronounced lowest detection limit of 600 ppb. The V5 gas sensor reflected a 21-fold enhancement in the gas sensing response towards 50 ppm ammonia relative to the pristine MoS 2 /RGO (MG). The changes attributed to the depletion layer of the p-n heterojunction formed by V@MoS 2 /RGO upon interaction with ammonia gas molecules and the influence of humidity on the sensing parameters were briefly discussed. The prepared V5 gas sensor proves to be a potential candidate for real-time sub ppb level detection of ammonia at room temperature. Ammonia sensing mechanism of vanadium doped MoS 2 /RGO composite.</abstract><doi>10.1039/d3tc02192k</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7526
ispartof Journal of materials chemistry. C, Materials for optical and electronic devices, 2023-11, Vol.11 (46), p.16333-16345
issn 2050-7526
2050-7534
language
recordid cdi_rsc_primary_d3tc02192k
source Royal Society Of Chemistry Journals 2008-
title Edge sites enriched vanadium doped MoS/RGO composites as highly selective room temperature ammonia gas sensors with ppb level detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T15%3A01%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Edge%20sites%20enriched%20vanadium%20doped%20MoS/RGO%20composites%20as%20highly%20selective%20room%20temperature%20ammonia%20gas%20sensors%20with%20ppb%20level%20detection&rft.jtitle=Journal%20of%20materials%20chemistry.%20C,%20Materials%20for%20optical%20and%20electronic%20devices&rft.au=S%20P,%20Linto%20Sibi&rft.date=2023-11-30&rft.volume=11&rft.issue=46&rft.spage=16333&rft.epage=16345&rft.pages=16333-16345&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/d3tc02192k&rft_dat=%3Crsc%3Ed3tc02192k%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true