A robust Ni single-atom catalyst for industrial current and exceptional selectivity in electrochemical CO reduction to CO

While achieving a faradaic efficiency (FE) over 90% in the electroreduction of CO 2 to CO with a single transition metal atom anchoring nitrogen-doped carbon (M-N-C) catalyst is indeed notable, the challenge remains in elevating the CO current density to a level suitable for industrial application....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2024-04, Vol.12 (14), p.8331-8339
Hauptverfasser: Liu, Zhicheng, Cao, Longsheng, Wang, Manli, Zhao, Yun, Hou, Ming, Shao, Zhigang
Format: Artikel
Sprache:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8339
container_issue 14
container_start_page 8331
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 12
creator Liu, Zhicheng
Cao, Longsheng
Wang, Manli
Zhao, Yun
Hou, Ming
Shao, Zhigang
description While achieving a faradaic efficiency (FE) over 90% in the electroreduction of CO 2 to CO with a single transition metal atom anchoring nitrogen-doped carbon (M-N-C) catalyst is indeed notable, the challenge remains in elevating the CO current density to a level suitable for industrial application. Here, we present the synthesis of a hydrophobic Ni single-atom catalyst (Ni-N-HCNs-5h) featuring unsaturated Ni-N coordination and abundant micropores, created by immobilizing nickel atoms on hollow carbon nanospheres. In virtue of the increased accumulation of CO 2 , inhibited hydrogen evolution reaction (HER), and optimized adsorption strength of intermediates, the Ni-N-HCNs-5h achieves an exceptional CO current density of 577 mA cm −2 with 96% CO FE at a potential of −1.17 V vs. RHE. Impressively, CO FE over 95% is sustained across a wide range of total current densities, spanning from 100 to 600 mA cm −2 . Density functional theory calculations provide insights into reducing the free energy for generating the *COOH intermediate and the suppression of the HER on unsaturated NiN 3 V sites (where V denotes a coordination vacancy) compared to the NiN 4 site. Our work sheds new light on developing M-N-C catalysts with high product selectivity and current densities suitable for industrial-scale CO 2 electroreduction to CO. A promising Ni single-atom catalyst was prepared for CO 2 electroreduction to CO, which not only shows excellent selectivity (96% FECO) but also achieves a high CO partial current density (577 mA cm −2 ).
doi_str_mv 10.1039/d3ta07216a
format Article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_d3ta07216a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d3ta07216a</sourcerecordid><originalsourceid>FETCH-rsc_primary_d3ta07216a3</originalsourceid><addsrcrecordid>eNqFjz1Pw0AMhk8IJCrowo7kPxC4NJAmY1WBOtGle2UuLhhd7iqfU5F_z1FVZeRd_H48i425K-1Daav2sasU7XxW1nhhJjP7bIv5U1tfnn3TXJtpSl82q7G2btuJGRcg8X1ICm8MicOHpwI19uBQ0Y-530UBDl1GhNGDG0QoKGDogL4d7ZVjyH0iT075wDpmHI5Jovuknl2el2sQ6gb3S4PGnG_N1Q59ounp3pj715fNclVIctu9cI8ybv9eqv7bfwB4-lEK</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A robust Ni single-atom catalyst for industrial current and exceptional selectivity in electrochemical CO reduction to CO</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Liu, Zhicheng ; Cao, Longsheng ; Wang, Manli ; Zhao, Yun ; Hou, Ming ; Shao, Zhigang</creator><creatorcontrib>Liu, Zhicheng ; Cao, Longsheng ; Wang, Manli ; Zhao, Yun ; Hou, Ming ; Shao, Zhigang</creatorcontrib><description>While achieving a faradaic efficiency (FE) over 90% in the electroreduction of CO 2 to CO with a single transition metal atom anchoring nitrogen-doped carbon (M-N-C) catalyst is indeed notable, the challenge remains in elevating the CO current density to a level suitable for industrial application. Here, we present the synthesis of a hydrophobic Ni single-atom catalyst (Ni-N-HCNs-5h) featuring unsaturated Ni-N coordination and abundant micropores, created by immobilizing nickel atoms on hollow carbon nanospheres. In virtue of the increased accumulation of CO 2 , inhibited hydrogen evolution reaction (HER), and optimized adsorption strength of intermediates, the Ni-N-HCNs-5h achieves an exceptional CO current density of 577 mA cm −2 with 96% CO FE at a potential of −1.17 V vs. RHE. Impressively, CO FE over 95% is sustained across a wide range of total current densities, spanning from 100 to 600 mA cm −2 . Density functional theory calculations provide insights into reducing the free energy for generating the *COOH intermediate and the suppression of the HER on unsaturated NiN 3 V sites (where V denotes a coordination vacancy) compared to the NiN 4 site. Our work sheds new light on developing M-N-C catalysts with high product selectivity and current densities suitable for industrial-scale CO 2 electroreduction to CO. A promising Ni single-atom catalyst was prepared for CO 2 electroreduction to CO, which not only shows excellent selectivity (96% FECO) but also achieves a high CO partial current density (577 mA cm −2 ).</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d3ta07216a</identifier><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2024-04, Vol.12 (14), p.8331-8339</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Liu, Zhicheng</creatorcontrib><creatorcontrib>Cao, Longsheng</creatorcontrib><creatorcontrib>Wang, Manli</creatorcontrib><creatorcontrib>Zhao, Yun</creatorcontrib><creatorcontrib>Hou, Ming</creatorcontrib><creatorcontrib>Shao, Zhigang</creatorcontrib><title>A robust Ni single-atom catalyst for industrial current and exceptional selectivity in electrochemical CO reduction to CO</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>While achieving a faradaic efficiency (FE) over 90% in the electroreduction of CO 2 to CO with a single transition metal atom anchoring nitrogen-doped carbon (M-N-C) catalyst is indeed notable, the challenge remains in elevating the CO current density to a level suitable for industrial application. Here, we present the synthesis of a hydrophobic Ni single-atom catalyst (Ni-N-HCNs-5h) featuring unsaturated Ni-N coordination and abundant micropores, created by immobilizing nickel atoms on hollow carbon nanospheres. In virtue of the increased accumulation of CO 2 , inhibited hydrogen evolution reaction (HER), and optimized adsorption strength of intermediates, the Ni-N-HCNs-5h achieves an exceptional CO current density of 577 mA cm −2 with 96% CO FE at a potential of −1.17 V vs. RHE. Impressively, CO FE over 95% is sustained across a wide range of total current densities, spanning from 100 to 600 mA cm −2 . Density functional theory calculations provide insights into reducing the free energy for generating the *COOH intermediate and the suppression of the HER on unsaturated NiN 3 V sites (where V denotes a coordination vacancy) compared to the NiN 4 site. Our work sheds new light on developing M-N-C catalysts with high product selectivity and current densities suitable for industrial-scale CO 2 electroreduction to CO. A promising Ni single-atom catalyst was prepared for CO 2 electroreduction to CO, which not only shows excellent selectivity (96% FECO) but also achieves a high CO partial current density (577 mA cm −2 ).</description><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFjz1Pw0AMhk8IJCrowo7kPxC4NJAmY1WBOtGle2UuLhhd7iqfU5F_z1FVZeRd_H48i425K-1Daav2sasU7XxW1nhhJjP7bIv5U1tfnn3TXJtpSl82q7G2btuJGRcg8X1ICm8MicOHpwI19uBQ0Y-530UBDl1GhNGDG0QoKGDogL4d7ZVjyH0iT075wDpmHI5Jovuknl2el2sQ6gb3S4PGnG_N1Q59ounp3pj715fNclVIctu9cI8ybv9eqv7bfwB4-lEK</recordid><startdate>20240402</startdate><enddate>20240402</enddate><creator>Liu, Zhicheng</creator><creator>Cao, Longsheng</creator><creator>Wang, Manli</creator><creator>Zhao, Yun</creator><creator>Hou, Ming</creator><creator>Shao, Zhigang</creator><scope/></search><sort><creationdate>20240402</creationdate><title>A robust Ni single-atom catalyst for industrial current and exceptional selectivity in electrochemical CO reduction to CO</title><author>Liu, Zhicheng ; Cao, Longsheng ; Wang, Manli ; Zhao, Yun ; Hou, Ming ; Shao, Zhigang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_d3ta07216a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zhicheng</creatorcontrib><creatorcontrib>Cao, Longsheng</creatorcontrib><creatorcontrib>Wang, Manli</creatorcontrib><creatorcontrib>Zhao, Yun</creatorcontrib><creatorcontrib>Hou, Ming</creatorcontrib><creatorcontrib>Shao, Zhigang</creatorcontrib><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Zhicheng</au><au>Cao, Longsheng</au><au>Wang, Manli</au><au>Zhao, Yun</au><au>Hou, Ming</au><au>Shao, Zhigang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A robust Ni single-atom catalyst for industrial current and exceptional selectivity in electrochemical CO reduction to CO</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2024-04-02</date><risdate>2024</risdate><volume>12</volume><issue>14</issue><spage>8331</spage><epage>8339</epage><pages>8331-8339</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>While achieving a faradaic efficiency (FE) over 90% in the electroreduction of CO 2 to CO with a single transition metal atom anchoring nitrogen-doped carbon (M-N-C) catalyst is indeed notable, the challenge remains in elevating the CO current density to a level suitable for industrial application. Here, we present the synthesis of a hydrophobic Ni single-atom catalyst (Ni-N-HCNs-5h) featuring unsaturated Ni-N coordination and abundant micropores, created by immobilizing nickel atoms on hollow carbon nanospheres. In virtue of the increased accumulation of CO 2 , inhibited hydrogen evolution reaction (HER), and optimized adsorption strength of intermediates, the Ni-N-HCNs-5h achieves an exceptional CO current density of 577 mA cm −2 with 96% CO FE at a potential of −1.17 V vs. RHE. Impressively, CO FE over 95% is sustained across a wide range of total current densities, spanning from 100 to 600 mA cm −2 . Density functional theory calculations provide insights into reducing the free energy for generating the *COOH intermediate and the suppression of the HER on unsaturated NiN 3 V sites (where V denotes a coordination vacancy) compared to the NiN 4 site. Our work sheds new light on developing M-N-C catalysts with high product selectivity and current densities suitable for industrial-scale CO 2 electroreduction to CO. A promising Ni single-atom catalyst was prepared for CO 2 electroreduction to CO, which not only shows excellent selectivity (96% FECO) but also achieves a high CO partial current density (577 mA cm −2 ).</abstract><doi>10.1039/d3ta07216a</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2024-04, Vol.12 (14), p.8331-8339
issn 2050-7488
2050-7496
language
recordid cdi_rsc_primary_d3ta07216a
source Royal Society Of Chemistry Journals 2008-
title A robust Ni single-atom catalyst for industrial current and exceptional selectivity in electrochemical CO reduction to CO
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A36%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20robust%20Ni%20single-atom%20catalyst%20for%20industrial%20current%20and%20exceptional%20selectivity%20in%20electrochemical%20CO%20reduction%20to%20CO&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Liu,%20Zhicheng&rft.date=2024-04-02&rft.volume=12&rft.issue=14&rft.spage=8331&rft.epage=8339&rft.pages=8331-8339&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d3ta07216a&rft_dat=%3Crsc%3Ed3ta07216a%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true