Ostwald ripening mechanism-derived MnOOH induces lattice oxygen escape for efficient aqueous MnO-Zn batteries

Aqueous rechargeable MnO 2 -Zn batteries have attracted much attention in recent years due to their high security, low cost and environmentally friendly nature. Nevertheless, the practical application of MnO 2 cathode materials is limited by the slow reaction kinetics during cycling and the poor cyc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2023-11, Vol.11 (44), p.24311-2432
Hauptverfasser: Zheng, Junjie, Qin, Chenchen, Chen, Chi, Zhang, Chuankun, Shi, Pei, Chen, Xin, Gan, Yi, Li, Jingying, Yao, Jia, Liu, Xin, Cheng, Junyan, Sun, Dan, Wan, Houzhao, Wang, Hao
Format: Artikel
Sprache:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2432
container_issue 44
container_start_page 24311
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 11
creator Zheng, Junjie
Qin, Chenchen
Chen, Chi
Zhang, Chuankun
Shi, Pei
Chen, Xin
Gan, Yi
Li, Jingying
Yao, Jia
Liu, Xin
Cheng, Junyan
Sun, Dan
Wan, Houzhao
Wang, Hao
description Aqueous rechargeable MnO 2 -Zn batteries have attracted much attention in recent years due to their high security, low cost and environmentally friendly nature. Nevertheless, the practical application of MnO 2 cathode materials is limited by the slow reaction kinetics during cycling and the poor cycle life caused by the disproportionation reaction of Mn. Here, we innovatively prepared MnOOH intermediates via the Ostwald ripening mechanism, followed by thermal treatment to induce lattice oxygen escape to finally obtain oxygen-defect-rich β-MnO 2 (O d ) nanorods. First-principles calculations have shown that the oxygen defects can serve as p-type dopants to yield better electrical conductivity and enhance the adsorption capability of β-MnO 2 for protons. The tested Zn//β-MnO 2 (O d ) batteries demonstrated an impressive specific capacity of 330.9 mA h g −1 at 100 mA g −1 . After 800 charge-discharge cycles at 1 A g −1 , they maintained a capacity of 171 mA h g −1 with a capacity retention rate of 88.9%. This work offers fascinating prospects for the creation of MnO 2 with oxygen-defects and provides distinct insights towards achieving high efficiency, more productive aqueous zinc ion batteries. Preparation of β-MnO 2 materials rich in oxygen defects for efficient aqueous zinc-ion batteries.
doi_str_mv 10.1039/d3ta05364d
format Article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_d3ta05364d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d3ta05364d</sourcerecordid><originalsourceid>FETCH-rsc_primary_d3ta05364d3</originalsourceid><addsrcrecordid>eNqFjz-LwkAUxBdRUDwb-4P3BaKr-XNJLSc2ksbqGll3X_RJson7NnfntzeCaOk0MzD8BkaI6ULOFjLM5ib0SsZhEpmeGC1lLIOvKEv6z5ymQzFhPstOqZRJlo1ElbP_U6UBRw1askeoUJ-UJa4Cg45-0cDW5vkGyJpWI0OpvCeNUP9fj2gBWasGoagdYFGQJrQe1KXFuuU7GfxYOHRIt4X8IQaFKhknDx-Lz_X3brUJHOt946hS7rp_3Qjf9Td3wEyK</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ostwald ripening mechanism-derived MnOOH induces lattice oxygen escape for efficient aqueous MnO-Zn batteries</title><source>Royal Society Of Chemistry Journals</source><creator>Zheng, Junjie ; Qin, Chenchen ; Chen, Chi ; Zhang, Chuankun ; Shi, Pei ; Chen, Xin ; Gan, Yi ; Li, Jingying ; Yao, Jia ; Liu, Xin ; Cheng, Junyan ; Sun, Dan ; Wan, Houzhao ; Wang, Hao</creator><creatorcontrib>Zheng, Junjie ; Qin, Chenchen ; Chen, Chi ; Zhang, Chuankun ; Shi, Pei ; Chen, Xin ; Gan, Yi ; Li, Jingying ; Yao, Jia ; Liu, Xin ; Cheng, Junyan ; Sun, Dan ; Wan, Houzhao ; Wang, Hao</creatorcontrib><description>Aqueous rechargeable MnO 2 -Zn batteries have attracted much attention in recent years due to their high security, low cost and environmentally friendly nature. Nevertheless, the practical application of MnO 2 cathode materials is limited by the slow reaction kinetics during cycling and the poor cycle life caused by the disproportionation reaction of Mn. Here, we innovatively prepared MnOOH intermediates via the Ostwald ripening mechanism, followed by thermal treatment to induce lattice oxygen escape to finally obtain oxygen-defect-rich β-MnO 2 (O d ) nanorods. First-principles calculations have shown that the oxygen defects can serve as p-type dopants to yield better electrical conductivity and enhance the adsorption capability of β-MnO 2 for protons. The tested Zn//β-MnO 2 (O d ) batteries demonstrated an impressive specific capacity of 330.9 mA h g −1 at 100 mA g −1 . After 800 charge-discharge cycles at 1 A g −1 , they maintained a capacity of 171 mA h g −1 with a capacity retention rate of 88.9%. This work offers fascinating prospects for the creation of MnO 2 with oxygen-defects and provides distinct insights towards achieving high efficiency, more productive aqueous zinc ion batteries. Preparation of β-MnO 2 materials rich in oxygen defects for efficient aqueous zinc-ion batteries.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d3ta05364d</identifier><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2023-11, Vol.11 (44), p.24311-2432</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zheng, Junjie</creatorcontrib><creatorcontrib>Qin, Chenchen</creatorcontrib><creatorcontrib>Chen, Chi</creatorcontrib><creatorcontrib>Zhang, Chuankun</creatorcontrib><creatorcontrib>Shi, Pei</creatorcontrib><creatorcontrib>Chen, Xin</creatorcontrib><creatorcontrib>Gan, Yi</creatorcontrib><creatorcontrib>Li, Jingying</creatorcontrib><creatorcontrib>Yao, Jia</creatorcontrib><creatorcontrib>Liu, Xin</creatorcontrib><creatorcontrib>Cheng, Junyan</creatorcontrib><creatorcontrib>Sun, Dan</creatorcontrib><creatorcontrib>Wan, Houzhao</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><title>Ostwald ripening mechanism-derived MnOOH induces lattice oxygen escape for efficient aqueous MnO-Zn batteries</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Aqueous rechargeable MnO 2 -Zn batteries have attracted much attention in recent years due to their high security, low cost and environmentally friendly nature. Nevertheless, the practical application of MnO 2 cathode materials is limited by the slow reaction kinetics during cycling and the poor cycle life caused by the disproportionation reaction of Mn. Here, we innovatively prepared MnOOH intermediates via the Ostwald ripening mechanism, followed by thermal treatment to induce lattice oxygen escape to finally obtain oxygen-defect-rich β-MnO 2 (O d ) nanorods. First-principles calculations have shown that the oxygen defects can serve as p-type dopants to yield better electrical conductivity and enhance the adsorption capability of β-MnO 2 for protons. The tested Zn//β-MnO 2 (O d ) batteries demonstrated an impressive specific capacity of 330.9 mA h g −1 at 100 mA g −1 . After 800 charge-discharge cycles at 1 A g −1 , they maintained a capacity of 171 mA h g −1 with a capacity retention rate of 88.9%. This work offers fascinating prospects for the creation of MnO 2 with oxygen-defects and provides distinct insights towards achieving high efficiency, more productive aqueous zinc ion batteries. Preparation of β-MnO 2 materials rich in oxygen defects for efficient aqueous zinc-ion batteries.</description><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFjz-LwkAUxBdRUDwb-4P3BaKr-XNJLSc2ksbqGll3X_RJson7NnfntzeCaOk0MzD8BkaI6ULOFjLM5ib0SsZhEpmeGC1lLIOvKEv6z5ymQzFhPstOqZRJlo1ElbP_U6UBRw1askeoUJ-UJa4Cg45-0cDW5vkGyJpWI0OpvCeNUP9fj2gBWasGoagdYFGQJrQe1KXFuuU7GfxYOHRIt4X8IQaFKhknDx-Lz_X3brUJHOt946hS7rp_3Qjf9Td3wEyK</recordid><startdate>20231114</startdate><enddate>20231114</enddate><creator>Zheng, Junjie</creator><creator>Qin, Chenchen</creator><creator>Chen, Chi</creator><creator>Zhang, Chuankun</creator><creator>Shi, Pei</creator><creator>Chen, Xin</creator><creator>Gan, Yi</creator><creator>Li, Jingying</creator><creator>Yao, Jia</creator><creator>Liu, Xin</creator><creator>Cheng, Junyan</creator><creator>Sun, Dan</creator><creator>Wan, Houzhao</creator><creator>Wang, Hao</creator><scope/></search><sort><creationdate>20231114</creationdate><title>Ostwald ripening mechanism-derived MnOOH induces lattice oxygen escape for efficient aqueous MnO-Zn batteries</title><author>Zheng, Junjie ; Qin, Chenchen ; Chen, Chi ; Zhang, Chuankun ; Shi, Pei ; Chen, Xin ; Gan, Yi ; Li, Jingying ; Yao, Jia ; Liu, Xin ; Cheng, Junyan ; Sun, Dan ; Wan, Houzhao ; Wang, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_d3ta05364d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Junjie</creatorcontrib><creatorcontrib>Qin, Chenchen</creatorcontrib><creatorcontrib>Chen, Chi</creatorcontrib><creatorcontrib>Zhang, Chuankun</creatorcontrib><creatorcontrib>Shi, Pei</creatorcontrib><creatorcontrib>Chen, Xin</creatorcontrib><creatorcontrib>Gan, Yi</creatorcontrib><creatorcontrib>Li, Jingying</creatorcontrib><creatorcontrib>Yao, Jia</creatorcontrib><creatorcontrib>Liu, Xin</creatorcontrib><creatorcontrib>Cheng, Junyan</creatorcontrib><creatorcontrib>Sun, Dan</creatorcontrib><creatorcontrib>Wan, Houzhao</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Junjie</au><au>Qin, Chenchen</au><au>Chen, Chi</au><au>Zhang, Chuankun</au><au>Shi, Pei</au><au>Chen, Xin</au><au>Gan, Yi</au><au>Li, Jingying</au><au>Yao, Jia</au><au>Liu, Xin</au><au>Cheng, Junyan</au><au>Sun, Dan</au><au>Wan, Houzhao</au><au>Wang, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ostwald ripening mechanism-derived MnOOH induces lattice oxygen escape for efficient aqueous MnO-Zn batteries</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2023-11-14</date><risdate>2023</risdate><volume>11</volume><issue>44</issue><spage>24311</spage><epage>2432</epage><pages>24311-2432</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Aqueous rechargeable MnO 2 -Zn batteries have attracted much attention in recent years due to their high security, low cost and environmentally friendly nature. Nevertheless, the practical application of MnO 2 cathode materials is limited by the slow reaction kinetics during cycling and the poor cycle life caused by the disproportionation reaction of Mn. Here, we innovatively prepared MnOOH intermediates via the Ostwald ripening mechanism, followed by thermal treatment to induce lattice oxygen escape to finally obtain oxygen-defect-rich β-MnO 2 (O d ) nanorods. First-principles calculations have shown that the oxygen defects can serve as p-type dopants to yield better electrical conductivity and enhance the adsorption capability of β-MnO 2 for protons. The tested Zn//β-MnO 2 (O d ) batteries demonstrated an impressive specific capacity of 330.9 mA h g −1 at 100 mA g −1 . After 800 charge-discharge cycles at 1 A g −1 , they maintained a capacity of 171 mA h g −1 with a capacity retention rate of 88.9%. This work offers fascinating prospects for the creation of MnO 2 with oxygen-defects and provides distinct insights towards achieving high efficiency, more productive aqueous zinc ion batteries. Preparation of β-MnO 2 materials rich in oxygen defects for efficient aqueous zinc-ion batteries.</abstract><doi>10.1039/d3ta05364d</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2023-11, Vol.11 (44), p.24311-2432
issn 2050-7488
2050-7496
language
recordid cdi_rsc_primary_d3ta05364d
source Royal Society Of Chemistry Journals
title Ostwald ripening mechanism-derived MnOOH induces lattice oxygen escape for efficient aqueous MnO-Zn batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T11%3A23%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ostwald%20ripening%20mechanism-derived%20MnOOH%20induces%20lattice%20oxygen%20escape%20for%20efficient%20aqueous%20MnO-Zn%20batteries&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Zheng,%20Junjie&rft.date=2023-11-14&rft.volume=11&rft.issue=44&rft.spage=24311&rft.epage=2432&rft.pages=24311-2432&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d3ta05364d&rft_dat=%3Crsc%3Ed3ta05364d%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true