Swelling kinetics of constrained hydrogel spheres
A cross-linked polymer network immersed in a solvent will absorb molecules from its surroundings, leading to transient swelling. Under the constraint of a semi-permeable membrane, the system will swell less and generate a larger internal pressure in return, a system rarely analyzed to date. We use a...
Gespeichert in:
Veröffentlicht in: | Soft matter 2023-11, Vol.19 (45), p.882-8831 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8831 |
---|---|
container_issue | 45 |
container_start_page | 882 |
container_title | Soft matter |
container_volume | 19 |
creator | Cano, Théotime Na, Hyeonuk Sun, Jeong-Yun Kim, Ho-Young |
description | A cross-linked polymer network immersed in a solvent will absorb molecules from its surroundings, leading to transient swelling. Under the constraint of a semi-permeable membrane, the system will swell less and generate a larger internal pressure in return, a system rarely analyzed to date. We use a nonlinear poroelastic theory to model the kinetics of swelling under mechanical constraint. We find the simulation results agree well with our experimental data using hydrogel beads made of a mixture of 3-sulfopropyl acrylate potassium salt and acrylamide, bathed in water. Understanding and predicting the response speed and the actuation stress developed during the swelling of constrained hydrogels can guide the design of polymer-based soft actuators with unusually high strength.
We studied the swelling kinetics of constrained hydrogel spheres by combining a nonlinear poroelasticity theory and experiments, and found that they are capable of generating an unusually high actuation force. |
doi_str_mv | 10.1039/d3sm01228j |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d3sm01228j</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2889246514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-d8aee262126d19faa7f47a47ab12eb6edfb8321f0612d20d14ca146bea3aa9583</originalsourceid><addsrcrecordid>eNpd0E1LAzEQBuAgCtbqxbuw4EWE1UySptmj1G8qHqrgbckmk3brdlOTLdJ_b7RSQRiYYXgYhpeQY6AXQHlxaXlcUGBMzXdID4ZC5FIJtbud-ds-OYhxTilXAmSPwOQTm6Zup9l73WJXm5h5lxnfxi7otLHZbG2Dn2KTxeUMA8ZDsud0E_Hot_fJ6-3Ny-g-Hz_fPYyuxrnhtOhyqzQikwyYtFA4rYdODHWqChhWEq2rFGfgqARmGbUgjAYhK9Rc62KgeJ-cbe4ug_9YYezKRR1Nela36FexZEoVTMgBiERP_9G5X4U2fZdUIajioCCp840ywccY0JXLUC90WJdAy-_0yms-efpJ7zHhkw0O0WzdX7r8CwRTa3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2894083181</pqid></control><display><type>article</type><title>Swelling kinetics of constrained hydrogel spheres</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Cano, Théotime ; Na, Hyeonuk ; Sun, Jeong-Yun ; Kim, Ho-Young</creator><creatorcontrib>Cano, Théotime ; Na, Hyeonuk ; Sun, Jeong-Yun ; Kim, Ho-Young</creatorcontrib><description>A cross-linked polymer network immersed in a solvent will absorb molecules from its surroundings, leading to transient swelling. Under the constraint of a semi-permeable membrane, the system will swell less and generate a larger internal pressure in return, a system rarely analyzed to date. We use a nonlinear poroelastic theory to model the kinetics of swelling under mechanical constraint. We find the simulation results agree well with our experimental data using hydrogel beads made of a mixture of 3-sulfopropyl acrylate potassium salt and acrylamide, bathed in water. Understanding and predicting the response speed and the actuation stress developed during the swelling of constrained hydrogels can guide the design of polymer-based soft actuators with unusually high strength.
We studied the swelling kinetics of constrained hydrogel spheres by combining a nonlinear poroelasticity theory and experiments, and found that they are capable of generating an unusually high actuation force.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/d3sm01228j</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Acrylamide ; Actuation ; Actuators ; Constraint modelling ; Hydrogels ; Internal pressure ; Kinetics ; Polymers ; Potassium ; Potassium salts ; Swelling</subject><ispartof>Soft matter, 2023-11, Vol.19 (45), p.882-8831</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c309t-d8aee262126d19faa7f47a47ab12eb6edfb8321f0612d20d14ca146bea3aa9583</cites><orcidid>0000-0002-7276-1947 ; 0000-0002-6813-2398</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cano, Théotime</creatorcontrib><creatorcontrib>Na, Hyeonuk</creatorcontrib><creatorcontrib>Sun, Jeong-Yun</creatorcontrib><creatorcontrib>Kim, Ho-Young</creatorcontrib><title>Swelling kinetics of constrained hydrogel spheres</title><title>Soft matter</title><description>A cross-linked polymer network immersed in a solvent will absorb molecules from its surroundings, leading to transient swelling. Under the constraint of a semi-permeable membrane, the system will swell less and generate a larger internal pressure in return, a system rarely analyzed to date. We use a nonlinear poroelastic theory to model the kinetics of swelling under mechanical constraint. We find the simulation results agree well with our experimental data using hydrogel beads made of a mixture of 3-sulfopropyl acrylate potassium salt and acrylamide, bathed in water. Understanding and predicting the response speed and the actuation stress developed during the swelling of constrained hydrogels can guide the design of polymer-based soft actuators with unusually high strength.
We studied the swelling kinetics of constrained hydrogel spheres by combining a nonlinear poroelasticity theory and experiments, and found that they are capable of generating an unusually high actuation force.</description><subject>Acrylamide</subject><subject>Actuation</subject><subject>Actuators</subject><subject>Constraint modelling</subject><subject>Hydrogels</subject><subject>Internal pressure</subject><subject>Kinetics</subject><subject>Polymers</subject><subject>Potassium</subject><subject>Potassium salts</subject><subject>Swelling</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0E1LAzEQBuAgCtbqxbuw4EWE1UySptmj1G8qHqrgbckmk3brdlOTLdJ_b7RSQRiYYXgYhpeQY6AXQHlxaXlcUGBMzXdID4ZC5FIJtbud-ds-OYhxTilXAmSPwOQTm6Zup9l73WJXm5h5lxnfxi7otLHZbG2Dn2KTxeUMA8ZDsud0E_Hot_fJ6-3Ny-g-Hz_fPYyuxrnhtOhyqzQikwyYtFA4rYdODHWqChhWEq2rFGfgqARmGbUgjAYhK9Rc62KgeJ-cbe4ug_9YYezKRR1Nela36FexZEoVTMgBiERP_9G5X4U2fZdUIajioCCp840ywccY0JXLUC90WJdAy-_0yms-efpJ7zHhkw0O0WzdX7r8CwRTa3w</recordid><startdate>20231122</startdate><enddate>20231122</enddate><creator>Cano, Théotime</creator><creator>Na, Hyeonuk</creator><creator>Sun, Jeong-Yun</creator><creator>Kim, Ho-Young</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7276-1947</orcidid><orcidid>https://orcid.org/0000-0002-6813-2398</orcidid></search><sort><creationdate>20231122</creationdate><title>Swelling kinetics of constrained hydrogel spheres</title><author>Cano, Théotime ; Na, Hyeonuk ; Sun, Jeong-Yun ; Kim, Ho-Young</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-d8aee262126d19faa7f47a47ab12eb6edfb8321f0612d20d14ca146bea3aa9583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acrylamide</topic><topic>Actuation</topic><topic>Actuators</topic><topic>Constraint modelling</topic><topic>Hydrogels</topic><topic>Internal pressure</topic><topic>Kinetics</topic><topic>Polymers</topic><topic>Potassium</topic><topic>Potassium salts</topic><topic>Swelling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cano, Théotime</creatorcontrib><creatorcontrib>Na, Hyeonuk</creatorcontrib><creatorcontrib>Sun, Jeong-Yun</creatorcontrib><creatorcontrib>Kim, Ho-Young</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cano, Théotime</au><au>Na, Hyeonuk</au><au>Sun, Jeong-Yun</au><au>Kim, Ho-Young</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Swelling kinetics of constrained hydrogel spheres</atitle><jtitle>Soft matter</jtitle><date>2023-11-22</date><risdate>2023</risdate><volume>19</volume><issue>45</issue><spage>882</spage><epage>8831</epage><pages>882-8831</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>A cross-linked polymer network immersed in a solvent will absorb molecules from its surroundings, leading to transient swelling. Under the constraint of a semi-permeable membrane, the system will swell less and generate a larger internal pressure in return, a system rarely analyzed to date. We use a nonlinear poroelastic theory to model the kinetics of swelling under mechanical constraint. We find the simulation results agree well with our experimental data using hydrogel beads made of a mixture of 3-sulfopropyl acrylate potassium salt and acrylamide, bathed in water. Understanding and predicting the response speed and the actuation stress developed during the swelling of constrained hydrogels can guide the design of polymer-based soft actuators with unusually high strength.
We studied the swelling kinetics of constrained hydrogel spheres by combining a nonlinear poroelasticity theory and experiments, and found that they are capable of generating an unusually high actuation force.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3sm01228j</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7276-1947</orcidid><orcidid>https://orcid.org/0000-0002-6813-2398</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1744-683X |
ispartof | Soft matter, 2023-11, Vol.19 (45), p.882-8831 |
issn | 1744-683X 1744-6848 |
language | eng |
recordid | cdi_rsc_primary_d3sm01228j |
source | Royal Society Of Chemistry Journals; Alma/SFX Local Collection |
subjects | Acrylamide Actuation Actuators Constraint modelling Hydrogels Internal pressure Kinetics Polymers Potassium Potassium salts Swelling |
title | Swelling kinetics of constrained hydrogel spheres |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A24%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Swelling%20kinetics%20of%20constrained%20hydrogel%20spheres&rft.jtitle=Soft%20matter&rft.au=Cano,%20Th%C3%A9otime&rft.date=2023-11-22&rft.volume=19&rft.issue=45&rft.spage=882&rft.epage=8831&rft.pages=882-8831&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/d3sm01228j&rft_dat=%3Cproquest_rsc_p%3E2889246514%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2894083181&rft_id=info:pmid/&rfr_iscdi=true |