Why surface hydrophobicity promotes CO electroreduction: a case study of hydrophobic polymer -heterocyclic carbenes

We report the use of polymer N -heterocyclic carbenes (NHCs) to control the microenvironment surrounding metal nanocatalysts, thereby enhancing their catalytic performance in CO 2 electroreduction. Three polymer NHC ligands were designed with different hydrophobicity: hydrophilic poly(ethylene oxide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) 2023-09, Vol.14 (36), p.9664-9677
Hauptverfasser: Luo, Qiang, Duan, Hanyi, McLaughlin, Michael C, Wei, Kecheng, Tapia, Joseph, Adewuyi, Joseph A, Shuster, Seth, Liaqat, Maham, Suib, Steven L, Ung, Gaël, Bai, Peng, Sun, Shouheng, He, Jie
Format: Artikel
Sprache:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9677
container_issue 36
container_start_page 9664
container_title Chemical science (Cambridge)
container_volume 14
creator Luo, Qiang
Duan, Hanyi
McLaughlin, Michael C
Wei, Kecheng
Tapia, Joseph
Adewuyi, Joseph A
Shuster, Seth
Liaqat, Maham
Suib, Steven L
Ung, Gaël
Bai, Peng
Sun, Shouheng
He, Jie
description We report the use of polymer N -heterocyclic carbenes (NHCs) to control the microenvironment surrounding metal nanocatalysts, thereby enhancing their catalytic performance in CO 2 electroreduction. Three polymer NHC ligands were designed with different hydrophobicity: hydrophilic poly(ethylene oxide) (PEO-NHC), hydrophobic polystyrene (PS-NHC), and amphiphilic block copolymer (BCP) (PEO- b -PS-NHC). All three polymer NHCs exhibited enhanced reactivity of gold nanoparticles (AuNPs) during CO 2 electroreduction by suppressing proton reduction. Notably, the incorporation of hydrophobic PS segments in both PS-NHC and PEO- b -PS-NHC led to a twofold increase in the partial current density for CO formation, as compared to the hydrophilic PEO-NHC. While polymer ligands did not hinder ion diffusion, their hydrophobicity altered the localized hydrogen bonding structures of water. This was confirmed experimentally and theoretically through attenuated total reflectance surface-enhanced infrared absorption spectroscopy and molecular dynamics simulation, demonstrating improved CO 2 diffusion and subsequent reduction in the presence of hydrophobic polymers. Furthermore, NHCs exhibited reasonable stability under reductive conditions, preserving the structural integrity of AuNPs, unlike thiol-ended polymers. The combination of NHC binding motifs with hydrophobic polymers provides valuable insights into controlling the microenvironment of metal nanocatalysts, offering a bioinspired strategy for the design of artificial metalloenzymes. Polymer NHCs as a strong binding motif together with hydrophobicity control the accessibility of substrates at catalyst-electrolyte interface and enhance CO 2 electroreduction on metal catalysts.
doi_str_mv 10.1039/d3sc02658b
format Article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_d3sc02658b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d3sc02658b</sourcerecordid><originalsourceid>FETCH-rsc_primary_d3sc02658b3</originalsourceid><addsrcrecordid>eNqFj7FuwkAQRE-ISKCEJj3S_oDJ2RdDnBaB6NIgpUTn9Vp2ZHut3XNxfw8FStIxzYzeaIox5jW1m9S64q1yijbb5h_lzCwz-54m29wV89-c2YVZqf7Ym5xL82y3NPrdRNBJao8ETayEx4bLFtsQYRTuOZDC_guoIwzCQtWEoeXhEzygVwINUxWB6_9jGLmLPQkkDQUSxojdjaKXkgbSF_NU-05pdfdnsz4ezvtTIoqXUdreS7z8nXGP-ivLjU-T</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Why surface hydrophobicity promotes CO electroreduction: a case study of hydrophobic polymer -heterocyclic carbenes</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><creator>Luo, Qiang ; Duan, Hanyi ; McLaughlin, Michael C ; Wei, Kecheng ; Tapia, Joseph ; Adewuyi, Joseph A ; Shuster, Seth ; Liaqat, Maham ; Suib, Steven L ; Ung, Gaël ; Bai, Peng ; Sun, Shouheng ; He, Jie</creator><creatorcontrib>Luo, Qiang ; Duan, Hanyi ; McLaughlin, Michael C ; Wei, Kecheng ; Tapia, Joseph ; Adewuyi, Joseph A ; Shuster, Seth ; Liaqat, Maham ; Suib, Steven L ; Ung, Gaël ; Bai, Peng ; Sun, Shouheng ; He, Jie</creatorcontrib><description>We report the use of polymer N -heterocyclic carbenes (NHCs) to control the microenvironment surrounding metal nanocatalysts, thereby enhancing their catalytic performance in CO 2 electroreduction. Three polymer NHC ligands were designed with different hydrophobicity: hydrophilic poly(ethylene oxide) (PEO-NHC), hydrophobic polystyrene (PS-NHC), and amphiphilic block copolymer (BCP) (PEO- b -PS-NHC). All three polymer NHCs exhibited enhanced reactivity of gold nanoparticles (AuNPs) during CO 2 electroreduction by suppressing proton reduction. Notably, the incorporation of hydrophobic PS segments in both PS-NHC and PEO- b -PS-NHC led to a twofold increase in the partial current density for CO formation, as compared to the hydrophilic PEO-NHC. While polymer ligands did not hinder ion diffusion, their hydrophobicity altered the localized hydrogen bonding structures of water. This was confirmed experimentally and theoretically through attenuated total reflectance surface-enhanced infrared absorption spectroscopy and molecular dynamics simulation, demonstrating improved CO 2 diffusion and subsequent reduction in the presence of hydrophobic polymers. Furthermore, NHCs exhibited reasonable stability under reductive conditions, preserving the structural integrity of AuNPs, unlike thiol-ended polymers. The combination of NHC binding motifs with hydrophobic polymers provides valuable insights into controlling the microenvironment of metal nanocatalysts, offering a bioinspired strategy for the design of artificial metalloenzymes. Polymer NHCs as a strong binding motif together with hydrophobicity control the accessibility of substrates at catalyst-electrolyte interface and enhance CO 2 electroreduction on metal catalysts.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/d3sc02658b</identifier><ispartof>Chemical science (Cambridge), 2023-09, Vol.14 (36), p.9664-9677</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27923,27924</link.rule.ids></links><search><creatorcontrib>Luo, Qiang</creatorcontrib><creatorcontrib>Duan, Hanyi</creatorcontrib><creatorcontrib>McLaughlin, Michael C</creatorcontrib><creatorcontrib>Wei, Kecheng</creatorcontrib><creatorcontrib>Tapia, Joseph</creatorcontrib><creatorcontrib>Adewuyi, Joseph A</creatorcontrib><creatorcontrib>Shuster, Seth</creatorcontrib><creatorcontrib>Liaqat, Maham</creatorcontrib><creatorcontrib>Suib, Steven L</creatorcontrib><creatorcontrib>Ung, Gaël</creatorcontrib><creatorcontrib>Bai, Peng</creatorcontrib><creatorcontrib>Sun, Shouheng</creatorcontrib><creatorcontrib>He, Jie</creatorcontrib><title>Why surface hydrophobicity promotes CO electroreduction: a case study of hydrophobic polymer -heterocyclic carbenes</title><title>Chemical science (Cambridge)</title><description>We report the use of polymer N -heterocyclic carbenes (NHCs) to control the microenvironment surrounding metal nanocatalysts, thereby enhancing their catalytic performance in CO 2 electroreduction. Three polymer NHC ligands were designed with different hydrophobicity: hydrophilic poly(ethylene oxide) (PEO-NHC), hydrophobic polystyrene (PS-NHC), and amphiphilic block copolymer (BCP) (PEO- b -PS-NHC). All three polymer NHCs exhibited enhanced reactivity of gold nanoparticles (AuNPs) during CO 2 electroreduction by suppressing proton reduction. Notably, the incorporation of hydrophobic PS segments in both PS-NHC and PEO- b -PS-NHC led to a twofold increase in the partial current density for CO formation, as compared to the hydrophilic PEO-NHC. While polymer ligands did not hinder ion diffusion, their hydrophobicity altered the localized hydrogen bonding structures of water. This was confirmed experimentally and theoretically through attenuated total reflectance surface-enhanced infrared absorption spectroscopy and molecular dynamics simulation, demonstrating improved CO 2 diffusion and subsequent reduction in the presence of hydrophobic polymers. Furthermore, NHCs exhibited reasonable stability under reductive conditions, preserving the structural integrity of AuNPs, unlike thiol-ended polymers. The combination of NHC binding motifs with hydrophobic polymers provides valuable insights into controlling the microenvironment of metal nanocatalysts, offering a bioinspired strategy for the design of artificial metalloenzymes. Polymer NHCs as a strong binding motif together with hydrophobicity control the accessibility of substrates at catalyst-electrolyte interface and enhance CO 2 electroreduction on metal catalysts.</description><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFj7FuwkAQRE-ISKCEJj3S_oDJ2RdDnBaB6NIgpUTn9Vp2ZHut3XNxfw8FStIxzYzeaIox5jW1m9S64q1yijbb5h_lzCwz-54m29wV89-c2YVZqf7Ym5xL82y3NPrdRNBJao8ETayEx4bLFtsQYRTuOZDC_guoIwzCQtWEoeXhEzygVwINUxWB6_9jGLmLPQkkDQUSxojdjaKXkgbSF_NU-05pdfdnsz4ezvtTIoqXUdreS7z8nXGP-ivLjU-T</recordid><startdate>20230920</startdate><enddate>20230920</enddate><creator>Luo, Qiang</creator><creator>Duan, Hanyi</creator><creator>McLaughlin, Michael C</creator><creator>Wei, Kecheng</creator><creator>Tapia, Joseph</creator><creator>Adewuyi, Joseph A</creator><creator>Shuster, Seth</creator><creator>Liaqat, Maham</creator><creator>Suib, Steven L</creator><creator>Ung, Gaël</creator><creator>Bai, Peng</creator><creator>Sun, Shouheng</creator><creator>He, Jie</creator><scope/></search><sort><creationdate>20230920</creationdate><title>Why surface hydrophobicity promotes CO electroreduction: a case study of hydrophobic polymer -heterocyclic carbenes</title><author>Luo, Qiang ; Duan, Hanyi ; McLaughlin, Michael C ; Wei, Kecheng ; Tapia, Joseph ; Adewuyi, Joseph A ; Shuster, Seth ; Liaqat, Maham ; Suib, Steven L ; Ung, Gaël ; Bai, Peng ; Sun, Shouheng ; He, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_d3sc02658b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Qiang</creatorcontrib><creatorcontrib>Duan, Hanyi</creatorcontrib><creatorcontrib>McLaughlin, Michael C</creatorcontrib><creatorcontrib>Wei, Kecheng</creatorcontrib><creatorcontrib>Tapia, Joseph</creatorcontrib><creatorcontrib>Adewuyi, Joseph A</creatorcontrib><creatorcontrib>Shuster, Seth</creatorcontrib><creatorcontrib>Liaqat, Maham</creatorcontrib><creatorcontrib>Suib, Steven L</creatorcontrib><creatorcontrib>Ung, Gaël</creatorcontrib><creatorcontrib>Bai, Peng</creatorcontrib><creatorcontrib>Sun, Shouheng</creatorcontrib><creatorcontrib>He, Jie</creatorcontrib><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Qiang</au><au>Duan, Hanyi</au><au>McLaughlin, Michael C</au><au>Wei, Kecheng</au><au>Tapia, Joseph</au><au>Adewuyi, Joseph A</au><au>Shuster, Seth</au><au>Liaqat, Maham</au><au>Suib, Steven L</au><au>Ung, Gaël</au><au>Bai, Peng</au><au>Sun, Shouheng</au><au>He, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Why surface hydrophobicity promotes CO electroreduction: a case study of hydrophobic polymer -heterocyclic carbenes</atitle><jtitle>Chemical science (Cambridge)</jtitle><date>2023-09-20</date><risdate>2023</risdate><volume>14</volume><issue>36</issue><spage>9664</spage><epage>9677</epage><pages>9664-9677</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>We report the use of polymer N -heterocyclic carbenes (NHCs) to control the microenvironment surrounding metal nanocatalysts, thereby enhancing their catalytic performance in CO 2 electroreduction. Three polymer NHC ligands were designed with different hydrophobicity: hydrophilic poly(ethylene oxide) (PEO-NHC), hydrophobic polystyrene (PS-NHC), and amphiphilic block copolymer (BCP) (PEO- b -PS-NHC). All three polymer NHCs exhibited enhanced reactivity of gold nanoparticles (AuNPs) during CO 2 electroreduction by suppressing proton reduction. Notably, the incorporation of hydrophobic PS segments in both PS-NHC and PEO- b -PS-NHC led to a twofold increase in the partial current density for CO formation, as compared to the hydrophilic PEO-NHC. While polymer ligands did not hinder ion diffusion, their hydrophobicity altered the localized hydrogen bonding structures of water. This was confirmed experimentally and theoretically through attenuated total reflectance surface-enhanced infrared absorption spectroscopy and molecular dynamics simulation, demonstrating improved CO 2 diffusion and subsequent reduction in the presence of hydrophobic polymers. Furthermore, NHCs exhibited reasonable stability under reductive conditions, preserving the structural integrity of AuNPs, unlike thiol-ended polymers. The combination of NHC binding motifs with hydrophobic polymers provides valuable insights into controlling the microenvironment of metal nanocatalysts, offering a bioinspired strategy for the design of artificial metalloenzymes. Polymer NHCs as a strong binding motif together with hydrophobicity control the accessibility of substrates at catalyst-electrolyte interface and enhance CO 2 electroreduction on metal catalysts.</abstract><doi>10.1039/d3sc02658b</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2041-6520
ispartof Chemical science (Cambridge), 2023-09, Vol.14 (36), p.9664-9677
issn 2041-6520
2041-6539
language
recordid cdi_rsc_primary_d3sc02658b
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; PubMed Central
title Why surface hydrophobicity promotes CO electroreduction: a case study of hydrophobic polymer -heterocyclic carbenes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T09%3A11%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Why%20surface%20hydrophobicity%20promotes%20CO%20electroreduction:%20a%20case%20study%20of%20hydrophobic%20polymer%20-heterocyclic%20carbenes&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Luo,%20Qiang&rft.date=2023-09-20&rft.volume=14&rft.issue=36&rft.spage=9664&rft.epage=9677&rft.pages=9664-9677&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/d3sc02658b&rft_dat=%3Crsc%3Ed3sc02658b%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true