Planar bismuth triamides: a tunable platform for main group Lewis acidity and polymerization catalysis
Geometric deformation in main group compounds can be used to elicit unique properties including strong Lewis acidity. Here we report on a family of planar bismuth( iii ) complexes ( cf. typically pyramidal structure for such compounds), which show a geometric Lewis acidity that can be further tuned...
Gespeichert in:
Veröffentlicht in: | Chemical science (Cambridge) 2023-05, Vol.14 (17), p.4549-4563 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4563 |
---|---|
container_issue | 17 |
container_start_page | 4549 |
container_title | Chemical science (Cambridge) |
container_volume | 14 |
creator | Hannah, Tyler J McCarvell, W. Michael Kirsch, Tamina Bedard, Joseph Hynes, Toren Mayho, Jacqueline Bamford, Karlee L Vos, Cyler W Kozak, Christopher M George, Tanner Masuda, Jason D Chitnis, S. S |
description | Geometric deformation in main group compounds can be used to elicit unique properties including strong Lewis acidity. Here we report on a family of
planar
bismuth(
iii
) complexes (
cf.
typically pyramidal structure for such compounds), which show a geometric Lewis acidity that can be further tuned by varying the steric and electronic features of the triamide ligand employed. The structural dynamism of the planar bismuth complexes was probed in both the solid and solution phase, revealing at least three distinct modes of intermolecular association. A modified Gutmann-Beckett method was used to assess their electrophilicity by employing trimethylphosphine sulfide in addition to triethylphosphine oxide as probes, providing insights into the preference for binding hard or soft substrates. Experimental binding studies were complemented by a computational assessment of the affinities and dissection of the latter into their intrinsic bond strength and deformation energy components. The results show comparable Lewis acidity to triarylboranes, with the added ability to bind two bases simultaneously, and reduced discrimination against soft substrates. We also study the catalytic efficacy of these complexes in the ring opening polymerization of cyclic esters -caprolactone and
rac
-lactide. The polymers obtained show excellent dispersity values and high molecular weights with low catalyst loadings used. The complexes retain their performance under industrially relevant conditions, suggesting they may be useful as less toxic alternatives to tin catalysts in the production of medical grade materials. Collectively, these results establish planar bismuth complexes as not only a novel neutral platform for main group Lewis acidity, but also a potentially valuable one for catalysis.
Planar bismuth compounds exhibit tunable Lewis acidity and high catalytic activity for lactone polymerization. |
doi_str_mv | 10.1039/d3sc00917c |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d3sc00917c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2811216365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-96cb4154026655bdbdad1bc31e9b923f01e0e2b3c7b7f5b91dedeb01ca2da2af3</originalsourceid><addsrcrecordid>eNpdkt9rFDEQx4NYbDn74rsS8EWE00xy2b34UuTqj8KBgvocJj-2TdndrElWuf71jV49tXmYDMyHLzPzHUKeAHsFTKjXTmTLmILWPiAnnK1g2UihHh5yzo7Jac7XrD4hQPL2ETkWbU24ZCek-9zjiImakIe5XNGSAg7B-fyGIi3ziKb3dOqxdDENtAY6YBjpZYrzRLf-Z8gUbXCh7CiOjk6x3w0-hRssIY7UYsF-l0N-TI467LM_vfsX5Nv7d183H5fbTx8uNm-3S7viqixVY80K5IrxppHSOOPQgbECvDKKi46BZ54bYVvTdtIocN55w8Aid8ixEwtyttedZjN4Z_1YEvZ6SmHAtNMRg_6_MoYrfRl_aGAgpRKsKry4U0jx--xz0UPI1vd1TT7OWfM1AIdG1C0vyPN76HWc01jnqxRbN0LJtarUyz1lU8w5-e7QDTD9y0J9Lr5sflu4qfCzf_s_oH8Mq8DTPZCyPVT_3oC4BR6Gov4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2808639589</pqid></control><display><type>article</type><title>Planar bismuth triamides: a tunable platform for main group Lewis acidity and polymerization catalysis</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Hannah, Tyler J ; McCarvell, W. Michael ; Kirsch, Tamina ; Bedard, Joseph ; Hynes, Toren ; Mayho, Jacqueline ; Bamford, Karlee L ; Vos, Cyler W ; Kozak, Christopher M ; George, Tanner ; Masuda, Jason D ; Chitnis, S. S</creator><creatorcontrib>Hannah, Tyler J ; McCarvell, W. Michael ; Kirsch, Tamina ; Bedard, Joseph ; Hynes, Toren ; Mayho, Jacqueline ; Bamford, Karlee L ; Vos, Cyler W ; Kozak, Christopher M ; George, Tanner ; Masuda, Jason D ; Chitnis, S. S</creatorcontrib><description>Geometric deformation in main group compounds can be used to elicit unique properties including strong Lewis acidity. Here we report on a family of
planar
bismuth(
iii
) complexes (
cf.
typically pyramidal structure for such compounds), which show a geometric Lewis acidity that can be further tuned by varying the steric and electronic features of the triamide ligand employed. The structural dynamism of the planar bismuth complexes was probed in both the solid and solution phase, revealing at least three distinct modes of intermolecular association. A modified Gutmann-Beckett method was used to assess their electrophilicity by employing trimethylphosphine sulfide in addition to triethylphosphine oxide as probes, providing insights into the preference for binding hard or soft substrates. Experimental binding studies were complemented by a computational assessment of the affinities and dissection of the latter into their intrinsic bond strength and deformation energy components. The results show comparable Lewis acidity to triarylboranes, with the added ability to bind two bases simultaneously, and reduced discrimination against soft substrates. We also study the catalytic efficacy of these complexes in the ring opening polymerization of cyclic esters -caprolactone and
rac
-lactide. The polymers obtained show excellent dispersity values and high molecular weights with low catalyst loadings used. The complexes retain their performance under industrially relevant conditions, suggesting they may be useful as less toxic alternatives to tin catalysts in the production of medical grade materials. Collectively, these results establish planar bismuth complexes as not only a novel neutral platform for main group Lewis acidity, but also a potentially valuable one for catalysis.
Planar bismuth compounds exhibit tunable Lewis acidity and high catalytic activity for lactone polymerization.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/d3sc00917c</identifier><identifier>PMID: 37152250</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Binding ; Bismuth ; Bonding strength ; Catalysis ; Catalysts ; Chemistry ; Deformation ; Esters ; Medical materials ; Polymerization ; Ring opening polymerization ; Substrates</subject><ispartof>Chemical science (Cambridge), 2023-05, Vol.14 (17), p.4549-4563</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2023</rights><rights>This journal is © The Royal Society of Chemistry 2023 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-96cb4154026655bdbdad1bc31e9b923f01e0e2b3c7b7f5b91dedeb01ca2da2af3</citedby><cites>FETCH-LOGICAL-c429t-96cb4154026655bdbdad1bc31e9b923f01e0e2b3c7b7f5b91dedeb01ca2da2af3</cites><orcidid>0000-0001-9180-7907 ; 0000-0001-7284-9132 ; 0000-0001-8205-4130 ; 0000-0002-6195-9691 ; 0000-0001-8493-4844</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10155930/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10155930/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37152250$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hannah, Tyler J</creatorcontrib><creatorcontrib>McCarvell, W. Michael</creatorcontrib><creatorcontrib>Kirsch, Tamina</creatorcontrib><creatorcontrib>Bedard, Joseph</creatorcontrib><creatorcontrib>Hynes, Toren</creatorcontrib><creatorcontrib>Mayho, Jacqueline</creatorcontrib><creatorcontrib>Bamford, Karlee L</creatorcontrib><creatorcontrib>Vos, Cyler W</creatorcontrib><creatorcontrib>Kozak, Christopher M</creatorcontrib><creatorcontrib>George, Tanner</creatorcontrib><creatorcontrib>Masuda, Jason D</creatorcontrib><creatorcontrib>Chitnis, S. S</creatorcontrib><title>Planar bismuth triamides: a tunable platform for main group Lewis acidity and polymerization catalysis</title><title>Chemical science (Cambridge)</title><addtitle>Chem Sci</addtitle><description>Geometric deformation in main group compounds can be used to elicit unique properties including strong Lewis acidity. Here we report on a family of
planar
bismuth(
iii
) complexes (
cf.
typically pyramidal structure for such compounds), which show a geometric Lewis acidity that can be further tuned by varying the steric and electronic features of the triamide ligand employed. The structural dynamism of the planar bismuth complexes was probed in both the solid and solution phase, revealing at least three distinct modes of intermolecular association. A modified Gutmann-Beckett method was used to assess their electrophilicity by employing trimethylphosphine sulfide in addition to triethylphosphine oxide as probes, providing insights into the preference for binding hard or soft substrates. Experimental binding studies were complemented by a computational assessment of the affinities and dissection of the latter into their intrinsic bond strength and deformation energy components. The results show comparable Lewis acidity to triarylboranes, with the added ability to bind two bases simultaneously, and reduced discrimination against soft substrates. We also study the catalytic efficacy of these complexes in the ring opening polymerization of cyclic esters -caprolactone and
rac
-lactide. The polymers obtained show excellent dispersity values and high molecular weights with low catalyst loadings used. The complexes retain their performance under industrially relevant conditions, suggesting they may be useful as less toxic alternatives to tin catalysts in the production of medical grade materials. Collectively, these results establish planar bismuth complexes as not only a novel neutral platform for main group Lewis acidity, but also a potentially valuable one for catalysis.
Planar bismuth compounds exhibit tunable Lewis acidity and high catalytic activity for lactone polymerization.</description><subject>Binding</subject><subject>Bismuth</subject><subject>Bonding strength</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemistry</subject><subject>Deformation</subject><subject>Esters</subject><subject>Medical materials</subject><subject>Polymerization</subject><subject>Ring opening polymerization</subject><subject>Substrates</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkt9rFDEQx4NYbDn74rsS8EWE00xy2b34UuTqj8KBgvocJj-2TdndrElWuf71jV49tXmYDMyHLzPzHUKeAHsFTKjXTmTLmILWPiAnnK1g2UihHh5yzo7Jac7XrD4hQPL2ETkWbU24ZCek-9zjiImakIe5XNGSAg7B-fyGIi3ziKb3dOqxdDENtAY6YBjpZYrzRLf-Z8gUbXCh7CiOjk6x3w0-hRssIY7UYsF-l0N-TI467LM_vfsX5Nv7d183H5fbTx8uNm-3S7viqixVY80K5IrxppHSOOPQgbECvDKKi46BZ54bYVvTdtIocN55w8Aid8ixEwtyttedZjN4Z_1YEvZ6SmHAtNMRg_6_MoYrfRl_aGAgpRKsKry4U0jx--xz0UPI1vd1TT7OWfM1AIdG1C0vyPN76HWc01jnqxRbN0LJtarUyz1lU8w5-e7QDTD9y0J9Lr5sflu4qfCzf_s_oH8Mq8DTPZCyPVT_3oC4BR6Gov4</recordid><startdate>20230503</startdate><enddate>20230503</enddate><creator>Hannah, Tyler J</creator><creator>McCarvell, W. Michael</creator><creator>Kirsch, Tamina</creator><creator>Bedard, Joseph</creator><creator>Hynes, Toren</creator><creator>Mayho, Jacqueline</creator><creator>Bamford, Karlee L</creator><creator>Vos, Cyler W</creator><creator>Kozak, Christopher M</creator><creator>George, Tanner</creator><creator>Masuda, Jason D</creator><creator>Chitnis, S. S</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9180-7907</orcidid><orcidid>https://orcid.org/0000-0001-7284-9132</orcidid><orcidid>https://orcid.org/0000-0001-8205-4130</orcidid><orcidid>https://orcid.org/0000-0002-6195-9691</orcidid><orcidid>https://orcid.org/0000-0001-8493-4844</orcidid></search><sort><creationdate>20230503</creationdate><title>Planar bismuth triamides: a tunable platform for main group Lewis acidity and polymerization catalysis</title><author>Hannah, Tyler J ; McCarvell, W. Michael ; Kirsch, Tamina ; Bedard, Joseph ; Hynes, Toren ; Mayho, Jacqueline ; Bamford, Karlee L ; Vos, Cyler W ; Kozak, Christopher M ; George, Tanner ; Masuda, Jason D ; Chitnis, S. S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-96cb4154026655bdbdad1bc31e9b923f01e0e2b3c7b7f5b91dedeb01ca2da2af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Binding</topic><topic>Bismuth</topic><topic>Bonding strength</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemistry</topic><topic>Deformation</topic><topic>Esters</topic><topic>Medical materials</topic><topic>Polymerization</topic><topic>Ring opening polymerization</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hannah, Tyler J</creatorcontrib><creatorcontrib>McCarvell, W. Michael</creatorcontrib><creatorcontrib>Kirsch, Tamina</creatorcontrib><creatorcontrib>Bedard, Joseph</creatorcontrib><creatorcontrib>Hynes, Toren</creatorcontrib><creatorcontrib>Mayho, Jacqueline</creatorcontrib><creatorcontrib>Bamford, Karlee L</creatorcontrib><creatorcontrib>Vos, Cyler W</creatorcontrib><creatorcontrib>Kozak, Christopher M</creatorcontrib><creatorcontrib>George, Tanner</creatorcontrib><creatorcontrib>Masuda, Jason D</creatorcontrib><creatorcontrib>Chitnis, S. S</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hannah, Tyler J</au><au>McCarvell, W. Michael</au><au>Kirsch, Tamina</au><au>Bedard, Joseph</au><au>Hynes, Toren</au><au>Mayho, Jacqueline</au><au>Bamford, Karlee L</au><au>Vos, Cyler W</au><au>Kozak, Christopher M</au><au>George, Tanner</au><au>Masuda, Jason D</au><au>Chitnis, S. S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Planar bismuth triamides: a tunable platform for main group Lewis acidity and polymerization catalysis</atitle><jtitle>Chemical science (Cambridge)</jtitle><addtitle>Chem Sci</addtitle><date>2023-05-03</date><risdate>2023</risdate><volume>14</volume><issue>17</issue><spage>4549</spage><epage>4563</epage><pages>4549-4563</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>Geometric deformation in main group compounds can be used to elicit unique properties including strong Lewis acidity. Here we report on a family of
planar
bismuth(
iii
) complexes (
cf.
typically pyramidal structure for such compounds), which show a geometric Lewis acidity that can be further tuned by varying the steric and electronic features of the triamide ligand employed. The structural dynamism of the planar bismuth complexes was probed in both the solid and solution phase, revealing at least three distinct modes of intermolecular association. A modified Gutmann-Beckett method was used to assess their electrophilicity by employing trimethylphosphine sulfide in addition to triethylphosphine oxide as probes, providing insights into the preference for binding hard or soft substrates. Experimental binding studies were complemented by a computational assessment of the affinities and dissection of the latter into their intrinsic bond strength and deformation energy components. The results show comparable Lewis acidity to triarylboranes, with the added ability to bind two bases simultaneously, and reduced discrimination against soft substrates. We also study the catalytic efficacy of these complexes in the ring opening polymerization of cyclic esters -caprolactone and
rac
-lactide. The polymers obtained show excellent dispersity values and high molecular weights with low catalyst loadings used. The complexes retain their performance under industrially relevant conditions, suggesting they may be useful as less toxic alternatives to tin catalysts in the production of medical grade materials. Collectively, these results establish planar bismuth complexes as not only a novel neutral platform for main group Lewis acidity, but also a potentially valuable one for catalysis.
Planar bismuth compounds exhibit tunable Lewis acidity and high catalytic activity for lactone polymerization.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>37152250</pmid><doi>10.1039/d3sc00917c</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9180-7907</orcidid><orcidid>https://orcid.org/0000-0001-7284-9132</orcidid><orcidid>https://orcid.org/0000-0001-8205-4130</orcidid><orcidid>https://orcid.org/0000-0002-6195-9691</orcidid><orcidid>https://orcid.org/0000-0001-8493-4844</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-6520 |
ispartof | Chemical science (Cambridge), 2023-05, Vol.14 (17), p.4549-4563 |
issn | 2041-6520 2041-6539 |
language | eng |
recordid | cdi_rsc_primary_d3sc00917c |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access |
subjects | Binding Bismuth Bonding strength Catalysis Catalysts Chemistry Deformation Esters Medical materials Polymerization Ring opening polymerization Substrates |
title | Planar bismuth triamides: a tunable platform for main group Lewis acidity and polymerization catalysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A30%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Planar%20bismuth%20triamides:%20a%20tunable%20platform%20for%20main%20group%20Lewis%20acidity%20and%20polymerization%20catalysis&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Hannah,%20Tyler%20J&rft.date=2023-05-03&rft.volume=14&rft.issue=17&rft.spage=4549&rft.epage=4563&rft.pages=4549-4563&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/d3sc00917c&rft_dat=%3Cproquest_rsc_p%3E2811216365%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2808639589&rft_id=info:pmid/37152250&rfr_iscdi=true |