Planar bismuth triamides: a tunable platform for main group Lewis acidity and polymerization catalysis

Geometric deformation in main group compounds can be used to elicit unique properties including strong Lewis acidity. Here we report on a family of planar bismuth( iii ) complexes ( cf. typically pyramidal structure for such compounds), which show a geometric Lewis acidity that can be further tuned...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) 2023-05, Vol.14 (17), p.4549-4563
Hauptverfasser: Hannah, Tyler J, McCarvell, W. Michael, Kirsch, Tamina, Bedard, Joseph, Hynes, Toren, Mayho, Jacqueline, Bamford, Karlee L, Vos, Cyler W, Kozak, Christopher M, George, Tanner, Masuda, Jason D, Chitnis, S. S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4563
container_issue 17
container_start_page 4549
container_title Chemical science (Cambridge)
container_volume 14
creator Hannah, Tyler J
McCarvell, W. Michael
Kirsch, Tamina
Bedard, Joseph
Hynes, Toren
Mayho, Jacqueline
Bamford, Karlee L
Vos, Cyler W
Kozak, Christopher M
George, Tanner
Masuda, Jason D
Chitnis, S. S
description Geometric deformation in main group compounds can be used to elicit unique properties including strong Lewis acidity. Here we report on a family of planar bismuth( iii ) complexes ( cf. typically pyramidal structure for such compounds), which show a geometric Lewis acidity that can be further tuned by varying the steric and electronic features of the triamide ligand employed. The structural dynamism of the planar bismuth complexes was probed in both the solid and solution phase, revealing at least three distinct modes of intermolecular association. A modified Gutmann-Beckett method was used to assess their electrophilicity by employing trimethylphosphine sulfide in addition to triethylphosphine oxide as probes, providing insights into the preference for binding hard or soft substrates. Experimental binding studies were complemented by a computational assessment of the affinities and dissection of the latter into their intrinsic bond strength and deformation energy components. The results show comparable Lewis acidity to triarylboranes, with the added ability to bind two bases simultaneously, and reduced discrimination against soft substrates. We also study the catalytic efficacy of these complexes in the ring opening polymerization of cyclic esters -caprolactone and rac -lactide. The polymers obtained show excellent dispersity values and high molecular weights with low catalyst loadings used. The complexes retain their performance under industrially relevant conditions, suggesting they may be useful as less toxic alternatives to tin catalysts in the production of medical grade materials. Collectively, these results establish planar bismuth complexes as not only a novel neutral platform for main group Lewis acidity, but also a potentially valuable one for catalysis. Planar bismuth compounds exhibit tunable Lewis acidity and high catalytic activity for lactone polymerization.
doi_str_mv 10.1039/d3sc00917c
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d3sc00917c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2811216365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-96cb4154026655bdbdad1bc31e9b923f01e0e2b3c7b7f5b91dedeb01ca2da2af3</originalsourceid><addsrcrecordid>eNpdkt9rFDEQx4NYbDn74rsS8EWE00xy2b34UuTqj8KBgvocJj-2TdndrElWuf71jV49tXmYDMyHLzPzHUKeAHsFTKjXTmTLmILWPiAnnK1g2UihHh5yzo7Jac7XrD4hQPL2ETkWbU24ZCek-9zjiImakIe5XNGSAg7B-fyGIi3ziKb3dOqxdDENtAY6YBjpZYrzRLf-Z8gUbXCh7CiOjk6x3w0-hRssIY7UYsF-l0N-TI467LM_vfsX5Nv7d183H5fbTx8uNm-3S7viqixVY80K5IrxppHSOOPQgbECvDKKi46BZ54bYVvTdtIocN55w8Aid8ixEwtyttedZjN4Z_1YEvZ6SmHAtNMRg_6_MoYrfRl_aGAgpRKsKry4U0jx--xz0UPI1vd1TT7OWfM1AIdG1C0vyPN76HWc01jnqxRbN0LJtarUyz1lU8w5-e7QDTD9y0J9Lr5sflu4qfCzf_s_oH8Mq8DTPZCyPVT_3oC4BR6Gov4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2808639589</pqid></control><display><type>article</type><title>Planar bismuth triamides: a tunable platform for main group Lewis acidity and polymerization catalysis</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Hannah, Tyler J ; McCarvell, W. Michael ; Kirsch, Tamina ; Bedard, Joseph ; Hynes, Toren ; Mayho, Jacqueline ; Bamford, Karlee L ; Vos, Cyler W ; Kozak, Christopher M ; George, Tanner ; Masuda, Jason D ; Chitnis, S. S</creator><creatorcontrib>Hannah, Tyler J ; McCarvell, W. Michael ; Kirsch, Tamina ; Bedard, Joseph ; Hynes, Toren ; Mayho, Jacqueline ; Bamford, Karlee L ; Vos, Cyler W ; Kozak, Christopher M ; George, Tanner ; Masuda, Jason D ; Chitnis, S. S</creatorcontrib><description>Geometric deformation in main group compounds can be used to elicit unique properties including strong Lewis acidity. Here we report on a family of planar bismuth( iii ) complexes ( cf. typically pyramidal structure for such compounds), which show a geometric Lewis acidity that can be further tuned by varying the steric and electronic features of the triamide ligand employed. The structural dynamism of the planar bismuth complexes was probed in both the solid and solution phase, revealing at least three distinct modes of intermolecular association. A modified Gutmann-Beckett method was used to assess their electrophilicity by employing trimethylphosphine sulfide in addition to triethylphosphine oxide as probes, providing insights into the preference for binding hard or soft substrates. Experimental binding studies were complemented by a computational assessment of the affinities and dissection of the latter into their intrinsic bond strength and deformation energy components. The results show comparable Lewis acidity to triarylboranes, with the added ability to bind two bases simultaneously, and reduced discrimination against soft substrates. We also study the catalytic efficacy of these complexes in the ring opening polymerization of cyclic esters -caprolactone and rac -lactide. The polymers obtained show excellent dispersity values and high molecular weights with low catalyst loadings used. The complexes retain their performance under industrially relevant conditions, suggesting they may be useful as less toxic alternatives to tin catalysts in the production of medical grade materials. Collectively, these results establish planar bismuth complexes as not only a novel neutral platform for main group Lewis acidity, but also a potentially valuable one for catalysis. Planar bismuth compounds exhibit tunable Lewis acidity and high catalytic activity for lactone polymerization.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/d3sc00917c</identifier><identifier>PMID: 37152250</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Binding ; Bismuth ; Bonding strength ; Catalysis ; Catalysts ; Chemistry ; Deformation ; Esters ; Medical materials ; Polymerization ; Ring opening polymerization ; Substrates</subject><ispartof>Chemical science (Cambridge), 2023-05, Vol.14 (17), p.4549-4563</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2023</rights><rights>This journal is © The Royal Society of Chemistry 2023 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-96cb4154026655bdbdad1bc31e9b923f01e0e2b3c7b7f5b91dedeb01ca2da2af3</citedby><cites>FETCH-LOGICAL-c429t-96cb4154026655bdbdad1bc31e9b923f01e0e2b3c7b7f5b91dedeb01ca2da2af3</cites><orcidid>0000-0001-9180-7907 ; 0000-0001-7284-9132 ; 0000-0001-8205-4130 ; 0000-0002-6195-9691 ; 0000-0001-8493-4844</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10155930/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10155930/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37152250$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hannah, Tyler J</creatorcontrib><creatorcontrib>McCarvell, W. Michael</creatorcontrib><creatorcontrib>Kirsch, Tamina</creatorcontrib><creatorcontrib>Bedard, Joseph</creatorcontrib><creatorcontrib>Hynes, Toren</creatorcontrib><creatorcontrib>Mayho, Jacqueline</creatorcontrib><creatorcontrib>Bamford, Karlee L</creatorcontrib><creatorcontrib>Vos, Cyler W</creatorcontrib><creatorcontrib>Kozak, Christopher M</creatorcontrib><creatorcontrib>George, Tanner</creatorcontrib><creatorcontrib>Masuda, Jason D</creatorcontrib><creatorcontrib>Chitnis, S. S</creatorcontrib><title>Planar bismuth triamides: a tunable platform for main group Lewis acidity and polymerization catalysis</title><title>Chemical science (Cambridge)</title><addtitle>Chem Sci</addtitle><description>Geometric deformation in main group compounds can be used to elicit unique properties including strong Lewis acidity. Here we report on a family of planar bismuth( iii ) complexes ( cf. typically pyramidal structure for such compounds), which show a geometric Lewis acidity that can be further tuned by varying the steric and electronic features of the triamide ligand employed. The structural dynamism of the planar bismuth complexes was probed in both the solid and solution phase, revealing at least three distinct modes of intermolecular association. A modified Gutmann-Beckett method was used to assess their electrophilicity by employing trimethylphosphine sulfide in addition to triethylphosphine oxide as probes, providing insights into the preference for binding hard or soft substrates. Experimental binding studies were complemented by a computational assessment of the affinities and dissection of the latter into their intrinsic bond strength and deformation energy components. The results show comparable Lewis acidity to triarylboranes, with the added ability to bind two bases simultaneously, and reduced discrimination against soft substrates. We also study the catalytic efficacy of these complexes in the ring opening polymerization of cyclic esters -caprolactone and rac -lactide. The polymers obtained show excellent dispersity values and high molecular weights with low catalyst loadings used. The complexes retain their performance under industrially relevant conditions, suggesting they may be useful as less toxic alternatives to tin catalysts in the production of medical grade materials. Collectively, these results establish planar bismuth complexes as not only a novel neutral platform for main group Lewis acidity, but also a potentially valuable one for catalysis. Planar bismuth compounds exhibit tunable Lewis acidity and high catalytic activity for lactone polymerization.</description><subject>Binding</subject><subject>Bismuth</subject><subject>Bonding strength</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemistry</subject><subject>Deformation</subject><subject>Esters</subject><subject>Medical materials</subject><subject>Polymerization</subject><subject>Ring opening polymerization</subject><subject>Substrates</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkt9rFDEQx4NYbDn74rsS8EWE00xy2b34UuTqj8KBgvocJj-2TdndrElWuf71jV49tXmYDMyHLzPzHUKeAHsFTKjXTmTLmILWPiAnnK1g2UihHh5yzo7Jac7XrD4hQPL2ETkWbU24ZCek-9zjiImakIe5XNGSAg7B-fyGIi3ziKb3dOqxdDENtAY6YBjpZYrzRLf-Z8gUbXCh7CiOjk6x3w0-hRssIY7UYsF-l0N-TI467LM_vfsX5Nv7d183H5fbTx8uNm-3S7viqixVY80K5IrxppHSOOPQgbECvDKKi46BZ54bYVvTdtIocN55w8Aid8ixEwtyttedZjN4Z_1YEvZ6SmHAtNMRg_6_MoYrfRl_aGAgpRKsKry4U0jx--xz0UPI1vd1TT7OWfM1AIdG1C0vyPN76HWc01jnqxRbN0LJtarUyz1lU8w5-e7QDTD9y0J9Lr5sflu4qfCzf_s_oH8Mq8DTPZCyPVT_3oC4BR6Gov4</recordid><startdate>20230503</startdate><enddate>20230503</enddate><creator>Hannah, Tyler J</creator><creator>McCarvell, W. Michael</creator><creator>Kirsch, Tamina</creator><creator>Bedard, Joseph</creator><creator>Hynes, Toren</creator><creator>Mayho, Jacqueline</creator><creator>Bamford, Karlee L</creator><creator>Vos, Cyler W</creator><creator>Kozak, Christopher M</creator><creator>George, Tanner</creator><creator>Masuda, Jason D</creator><creator>Chitnis, S. S</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9180-7907</orcidid><orcidid>https://orcid.org/0000-0001-7284-9132</orcidid><orcidid>https://orcid.org/0000-0001-8205-4130</orcidid><orcidid>https://orcid.org/0000-0002-6195-9691</orcidid><orcidid>https://orcid.org/0000-0001-8493-4844</orcidid></search><sort><creationdate>20230503</creationdate><title>Planar bismuth triamides: a tunable platform for main group Lewis acidity and polymerization catalysis</title><author>Hannah, Tyler J ; McCarvell, W. Michael ; Kirsch, Tamina ; Bedard, Joseph ; Hynes, Toren ; Mayho, Jacqueline ; Bamford, Karlee L ; Vos, Cyler W ; Kozak, Christopher M ; George, Tanner ; Masuda, Jason D ; Chitnis, S. S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-96cb4154026655bdbdad1bc31e9b923f01e0e2b3c7b7f5b91dedeb01ca2da2af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Binding</topic><topic>Bismuth</topic><topic>Bonding strength</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemistry</topic><topic>Deformation</topic><topic>Esters</topic><topic>Medical materials</topic><topic>Polymerization</topic><topic>Ring opening polymerization</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hannah, Tyler J</creatorcontrib><creatorcontrib>McCarvell, W. Michael</creatorcontrib><creatorcontrib>Kirsch, Tamina</creatorcontrib><creatorcontrib>Bedard, Joseph</creatorcontrib><creatorcontrib>Hynes, Toren</creatorcontrib><creatorcontrib>Mayho, Jacqueline</creatorcontrib><creatorcontrib>Bamford, Karlee L</creatorcontrib><creatorcontrib>Vos, Cyler W</creatorcontrib><creatorcontrib>Kozak, Christopher M</creatorcontrib><creatorcontrib>George, Tanner</creatorcontrib><creatorcontrib>Masuda, Jason D</creatorcontrib><creatorcontrib>Chitnis, S. S</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hannah, Tyler J</au><au>McCarvell, W. Michael</au><au>Kirsch, Tamina</au><au>Bedard, Joseph</au><au>Hynes, Toren</au><au>Mayho, Jacqueline</au><au>Bamford, Karlee L</au><au>Vos, Cyler W</au><au>Kozak, Christopher M</au><au>George, Tanner</au><au>Masuda, Jason D</au><au>Chitnis, S. S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Planar bismuth triamides: a tunable platform for main group Lewis acidity and polymerization catalysis</atitle><jtitle>Chemical science (Cambridge)</jtitle><addtitle>Chem Sci</addtitle><date>2023-05-03</date><risdate>2023</risdate><volume>14</volume><issue>17</issue><spage>4549</spage><epage>4563</epage><pages>4549-4563</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>Geometric deformation in main group compounds can be used to elicit unique properties including strong Lewis acidity. Here we report on a family of planar bismuth( iii ) complexes ( cf. typically pyramidal structure for such compounds), which show a geometric Lewis acidity that can be further tuned by varying the steric and electronic features of the triamide ligand employed. The structural dynamism of the planar bismuth complexes was probed in both the solid and solution phase, revealing at least three distinct modes of intermolecular association. A modified Gutmann-Beckett method was used to assess their electrophilicity by employing trimethylphosphine sulfide in addition to triethylphosphine oxide as probes, providing insights into the preference for binding hard or soft substrates. Experimental binding studies were complemented by a computational assessment of the affinities and dissection of the latter into their intrinsic bond strength and deformation energy components. The results show comparable Lewis acidity to triarylboranes, with the added ability to bind two bases simultaneously, and reduced discrimination against soft substrates. We also study the catalytic efficacy of these complexes in the ring opening polymerization of cyclic esters -caprolactone and rac -lactide. The polymers obtained show excellent dispersity values and high molecular weights with low catalyst loadings used. The complexes retain their performance under industrially relevant conditions, suggesting they may be useful as less toxic alternatives to tin catalysts in the production of medical grade materials. Collectively, these results establish planar bismuth complexes as not only a novel neutral platform for main group Lewis acidity, but also a potentially valuable one for catalysis. Planar bismuth compounds exhibit tunable Lewis acidity and high catalytic activity for lactone polymerization.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>37152250</pmid><doi>10.1039/d3sc00917c</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9180-7907</orcidid><orcidid>https://orcid.org/0000-0001-7284-9132</orcidid><orcidid>https://orcid.org/0000-0001-8205-4130</orcidid><orcidid>https://orcid.org/0000-0002-6195-9691</orcidid><orcidid>https://orcid.org/0000-0001-8493-4844</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-6520
ispartof Chemical science (Cambridge), 2023-05, Vol.14 (17), p.4549-4563
issn 2041-6520
2041-6539
language eng
recordid cdi_rsc_primary_d3sc00917c
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
subjects Binding
Bismuth
Bonding strength
Catalysis
Catalysts
Chemistry
Deformation
Esters
Medical materials
Polymerization
Ring opening polymerization
Substrates
title Planar bismuth triamides: a tunable platform for main group Lewis acidity and polymerization catalysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A30%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Planar%20bismuth%20triamides:%20a%20tunable%20platform%20for%20main%20group%20Lewis%20acidity%20and%20polymerization%20catalysis&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Hannah,%20Tyler%20J&rft.date=2023-05-03&rft.volume=14&rft.issue=17&rft.spage=4549&rft.epage=4563&rft.pages=4549-4563&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/d3sc00917c&rft_dat=%3Cproquest_rsc_p%3E2811216365%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2808639589&rft_id=info:pmid/37152250&rfr_iscdi=true