Determining the resolution of a tracer for magnetic particle imaging by means of magnetic particle spectroscopy

Magnetic particle imaging (MPI) is an imaging modality to quantitatively determine the three-dimensional distribution of magnetic nanoparticles (MNPs) administered as a tracer into a biological system. Magnetic particle spectroscopy (MPS) is the zero-dimensional MPI counterpart without spatial codin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2023-05, Vol.13 (23), p.1573-15736
Hauptverfasser: Remmo, Amani, Wiekhorst, Frank, Kosch, Olaf, Lyer, Stefan, Unterweger, Harald, Kratz, Harald, Löwa, Norbert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15736
container_issue 23
container_start_page 1573
container_title RSC advances
container_volume 13
creator Remmo, Amani
Wiekhorst, Frank
Kosch, Olaf
Lyer, Stefan
Unterweger, Harald
Kratz, Harald
Löwa, Norbert
description Magnetic particle imaging (MPI) is an imaging modality to quantitatively determine the three-dimensional distribution of magnetic nanoparticles (MNPs) administered as a tracer into a biological system. Magnetic particle spectroscopy (MPS) is the zero-dimensional MPI counterpart without spatial coding but with much higher sensitivity. Generally, MPS is employed to qualitatively evaluate the MPI capability of tracer systems from the measured specific harmonic spectra. Here, we investigated the correlation of three characteristic MPS parameters with the achievable MPI resolution from a recently introduced procedure based on a two-voxel-analysis of data taken from the system function acquisition that is mandatory in Lissajous scanning MPI. We evaluated nine different tracer systems and determined their MPI capability and resolution from MPS measurements and compared the results with MPI phantom measurements. We evaluated 9 tracers by magnetic particle spectroscopy to estimate their magnetic particle imaging capability and investigated the correlation of 3 MPS parameters and the hydrodynamic size distribution with the achievable MPI resolution r determined by two-voxel-analysis.
doi_str_mv 10.1039/d3ra01394d
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d3ra01394d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2821271622</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-c287512eb5fa6d5bf0d44eebffe9d8af688f97447a9590cc1b0b517a079aba5c3</originalsourceid><addsrcrecordid>eNplkk1rGzEQhkVJaULqS-8tglxCwO1I2i-dionzUQgESnsWWu3I2bArbaTdgP995Nhxk0aXEZpnXt6ZESFfGHxnIOSPRgQNTMis-UCOOGTFnEMhD17dD8ksxntIp8gZL9gncihKLnIG2RHxSxwx9K1r3YqOd0gDRt9NY-sd9ZZqOgZtMFDrA-31yuHYGjrokEKHtE1Pm8J6TXvULm5K3lNxQDMGH40f1p_JR6u7iLNdPCZ_Ly_-nF_Pb26vfp0vbuYm43KcG16VySzWudVFk9cWmixDrK1F2VTaFlVlZZllpZa5BGNYDXXOSg2l1LXOjTgmP7e6w1T32Bh0qZFODSFZDmvldaveZlx7p1b-UTHgUKXRJYXTnULwDxPGUfVtNNh12qGfouIVB-BCgEjoyX_ovZ-CS_1tKMZLVnCeqLMtZdIsYkC7d8NAbXapluL34nmXywR_e-1_j75sLgFft0CIZp_99xnEE4sRpfQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821271622</pqid></control><display><type>article</type><title>Determining the resolution of a tracer for magnetic particle imaging by means of magnetic particle spectroscopy</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Remmo, Amani ; Wiekhorst, Frank ; Kosch, Olaf ; Lyer, Stefan ; Unterweger, Harald ; Kratz, Harald ; Löwa, Norbert</creator><creatorcontrib>Remmo, Amani ; Wiekhorst, Frank ; Kosch, Olaf ; Lyer, Stefan ; Unterweger, Harald ; Kratz, Harald ; Löwa, Norbert</creatorcontrib><description>Magnetic particle imaging (MPI) is an imaging modality to quantitatively determine the three-dimensional distribution of magnetic nanoparticles (MNPs) administered as a tracer into a biological system. Magnetic particle spectroscopy (MPS) is the zero-dimensional MPI counterpart without spatial coding but with much higher sensitivity. Generally, MPS is employed to qualitatively evaluate the MPI capability of tracer systems from the measured specific harmonic spectra. Here, we investigated the correlation of three characteristic MPS parameters with the achievable MPI resolution from a recently introduced procedure based on a two-voxel-analysis of data taken from the system function acquisition that is mandatory in Lissajous scanning MPI. We evaluated nine different tracer systems and determined their MPI capability and resolution from MPS measurements and compared the results with MPI phantom measurements. We evaluated 9 tracers by magnetic particle spectroscopy to estimate their magnetic particle imaging capability and investigated the correlation of 3 MPS parameters and the hydrodynamic size distribution with the achievable MPI resolution r determined by two-voxel-analysis.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d3ra01394d</identifier><identifier>PMID: 37235104</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Chemistry ; Imaging ; Nanoparticles ; Spectroscopy</subject><ispartof>RSC advances, 2023-05, Vol.13 (23), p.1573-15736</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2023</rights><rights>This journal is © The Royal Society of Chemistry 2023 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-c287512eb5fa6d5bf0d44eebffe9d8af688f97447a9590cc1b0b517a079aba5c3</citedby><cites>FETCH-LOGICAL-c429t-c287512eb5fa6d5bf0d44eebffe9d8af688f97447a9590cc1b0b517a079aba5c3</cites><orcidid>0000-0003-2338-1136 ; 0000-0001-6245-9042 ; 0000-0002-6740-8217 ; 0000-0002-8335-0692 ; 0000-0003-0608-1473 ; 0000-0003-4171-5283 ; 0000-0003-0126-0288</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10208046/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10208046/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37235104$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Remmo, Amani</creatorcontrib><creatorcontrib>Wiekhorst, Frank</creatorcontrib><creatorcontrib>Kosch, Olaf</creatorcontrib><creatorcontrib>Lyer, Stefan</creatorcontrib><creatorcontrib>Unterweger, Harald</creatorcontrib><creatorcontrib>Kratz, Harald</creatorcontrib><creatorcontrib>Löwa, Norbert</creatorcontrib><title>Determining the resolution of a tracer for magnetic particle imaging by means of magnetic particle spectroscopy</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>Magnetic particle imaging (MPI) is an imaging modality to quantitatively determine the three-dimensional distribution of magnetic nanoparticles (MNPs) administered as a tracer into a biological system. Magnetic particle spectroscopy (MPS) is the zero-dimensional MPI counterpart without spatial coding but with much higher sensitivity. Generally, MPS is employed to qualitatively evaluate the MPI capability of tracer systems from the measured specific harmonic spectra. Here, we investigated the correlation of three characteristic MPS parameters with the achievable MPI resolution from a recently introduced procedure based on a two-voxel-analysis of data taken from the system function acquisition that is mandatory in Lissajous scanning MPI. We evaluated nine different tracer systems and determined their MPI capability and resolution from MPS measurements and compared the results with MPI phantom measurements. We evaluated 9 tracers by magnetic particle spectroscopy to estimate their magnetic particle imaging capability and investigated the correlation of 3 MPS parameters and the hydrodynamic size distribution with the achievable MPI resolution r determined by two-voxel-analysis.</description><subject>Chemistry</subject><subject>Imaging</subject><subject>Nanoparticles</subject><subject>Spectroscopy</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNplkk1rGzEQhkVJaULqS-8tglxCwO1I2i-dionzUQgESnsWWu3I2bArbaTdgP995Nhxk0aXEZpnXt6ZESFfGHxnIOSPRgQNTMis-UCOOGTFnEMhD17dD8ksxntIp8gZL9gncihKLnIG2RHxSxwx9K1r3YqOd0gDRt9NY-sd9ZZqOgZtMFDrA-31yuHYGjrokEKHtE1Pm8J6TXvULm5K3lNxQDMGH40f1p_JR6u7iLNdPCZ_Ly_-nF_Pb26vfp0vbuYm43KcG16VySzWudVFk9cWmixDrK1F2VTaFlVlZZllpZa5BGNYDXXOSg2l1LXOjTgmP7e6w1T32Bh0qZFODSFZDmvldaveZlx7p1b-UTHgUKXRJYXTnULwDxPGUfVtNNh12qGfouIVB-BCgEjoyX_ovZ-CS_1tKMZLVnCeqLMtZdIsYkC7d8NAbXapluL34nmXywR_e-1_j75sLgFft0CIZp_99xnEE4sRpfQ</recordid><startdate>20230522</startdate><enddate>20230522</enddate><creator>Remmo, Amani</creator><creator>Wiekhorst, Frank</creator><creator>Kosch, Olaf</creator><creator>Lyer, Stefan</creator><creator>Unterweger, Harald</creator><creator>Kratz, Harald</creator><creator>Löwa, Norbert</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2338-1136</orcidid><orcidid>https://orcid.org/0000-0001-6245-9042</orcidid><orcidid>https://orcid.org/0000-0002-6740-8217</orcidid><orcidid>https://orcid.org/0000-0002-8335-0692</orcidid><orcidid>https://orcid.org/0000-0003-0608-1473</orcidid><orcidid>https://orcid.org/0000-0003-4171-5283</orcidid><orcidid>https://orcid.org/0000-0003-0126-0288</orcidid></search><sort><creationdate>20230522</creationdate><title>Determining the resolution of a tracer for magnetic particle imaging by means of magnetic particle spectroscopy</title><author>Remmo, Amani ; Wiekhorst, Frank ; Kosch, Olaf ; Lyer, Stefan ; Unterweger, Harald ; Kratz, Harald ; Löwa, Norbert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-c287512eb5fa6d5bf0d44eebffe9d8af688f97447a9590cc1b0b517a079aba5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemistry</topic><topic>Imaging</topic><topic>Nanoparticles</topic><topic>Spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Remmo, Amani</creatorcontrib><creatorcontrib>Wiekhorst, Frank</creatorcontrib><creatorcontrib>Kosch, Olaf</creatorcontrib><creatorcontrib>Lyer, Stefan</creatorcontrib><creatorcontrib>Unterweger, Harald</creatorcontrib><creatorcontrib>Kratz, Harald</creatorcontrib><creatorcontrib>Löwa, Norbert</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Remmo, Amani</au><au>Wiekhorst, Frank</au><au>Kosch, Olaf</au><au>Lyer, Stefan</au><au>Unterweger, Harald</au><au>Kratz, Harald</au><au>Löwa, Norbert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determining the resolution of a tracer for magnetic particle imaging by means of magnetic particle spectroscopy</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2023-05-22</date><risdate>2023</risdate><volume>13</volume><issue>23</issue><spage>1573</spage><epage>15736</epage><pages>1573-15736</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>Magnetic particle imaging (MPI) is an imaging modality to quantitatively determine the three-dimensional distribution of magnetic nanoparticles (MNPs) administered as a tracer into a biological system. Magnetic particle spectroscopy (MPS) is the zero-dimensional MPI counterpart without spatial coding but with much higher sensitivity. Generally, MPS is employed to qualitatively evaluate the MPI capability of tracer systems from the measured specific harmonic spectra. Here, we investigated the correlation of three characteristic MPS parameters with the achievable MPI resolution from a recently introduced procedure based on a two-voxel-analysis of data taken from the system function acquisition that is mandatory in Lissajous scanning MPI. We evaluated nine different tracer systems and determined their MPI capability and resolution from MPS measurements and compared the results with MPI phantom measurements. We evaluated 9 tracers by magnetic particle spectroscopy to estimate their magnetic particle imaging capability and investigated the correlation of 3 MPS parameters and the hydrodynamic size distribution with the achievable MPI resolution r determined by two-voxel-analysis.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>37235104</pmid><doi>10.1039/d3ra01394d</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-2338-1136</orcidid><orcidid>https://orcid.org/0000-0001-6245-9042</orcidid><orcidid>https://orcid.org/0000-0002-6740-8217</orcidid><orcidid>https://orcid.org/0000-0002-8335-0692</orcidid><orcidid>https://orcid.org/0000-0003-0608-1473</orcidid><orcidid>https://orcid.org/0000-0003-4171-5283</orcidid><orcidid>https://orcid.org/0000-0003-0126-0288</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2046-2069
ispartof RSC advances, 2023-05, Vol.13 (23), p.1573-15736
issn 2046-2069
2046-2069
language eng
recordid cdi_rsc_primary_d3ra01394d
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; PubMed Central Open Access
subjects Chemistry
Imaging
Nanoparticles
Spectroscopy
title Determining the resolution of a tracer for magnetic particle imaging by means of magnetic particle spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A40%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determining%20the%20resolution%20of%20a%20tracer%20for%20magnetic%20particle%20imaging%20by%20means%20of%20magnetic%20particle%20spectroscopy&rft.jtitle=RSC%20advances&rft.au=Remmo,%20Amani&rft.date=2023-05-22&rft.volume=13&rft.issue=23&rft.spage=1573&rft.epage=15736&rft.pages=1573-15736&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d3ra01394d&rft_dat=%3Cproquest_rsc_p%3E2821271622%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2821271622&rft_id=info:pmid/37235104&rfr_iscdi=true