Membrane fluidity properties of lipid-coated polylactic acid nanoparticles
Lipid coating is considered a versatile strategy to equip nanoparticles (NPs) with a biomimetic surface coating, but the membrane properties of these nanoassemblies remain in many cases insufficiently understood. In this work, we apply C-Laurdan generalized polarization (GP) measurements to probe th...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2024-05, Vol.16 (17), p.8533-8545 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8545 |
---|---|
container_issue | 17 |
container_start_page | 8533 |
container_title | Nanoscale |
container_volume | 16 |
creator | Gu, Yuanqing Reinhard, Björn M |
description | Lipid coating is considered a versatile strategy to equip nanoparticles (NPs) with a biomimetic surface coating, but the membrane properties of these nanoassemblies remain in many cases insufficiently understood. In this work, we apply C-Laurdan generalized polarization (GP) measurements to probe the temperature-dependent polarity of hybrid membranes consisting of a lipid monolayer adsorbed onto a polylactic acid (PLA) polymer core as function of lipid composition and compare the behavior of the lipid coated NPs (LNPs) with that of liposomes assembled from identical lipid mixtures. The LNPs were generated by nanoprecipitation of the polymer in aqueous solutions containing two types of lipid mixtures: (i) cholesterol, dipalmitoylphosphatidylcholine (DPPC), and the ganglioside GM3, as well as (ii) dioleoylphosphatidylcholine (DOPC), DPPC and GM3. LNPs were found to exhibit more distinct and narrower phase transitions than corresponding liposomes and to retain detectable phase transitions even for cholesterol or DOPC concentrations that yielded no detectable transitions in liposomes. These findings together with higher GP values in the case of the LNPs for temperatures above the phase transition temperature indicate a stabilization of the membrane through the polymer core. LNP binding studies to GM3-recognizing cells indicate that differences in the membrane fluidity affect binding avidity in the investigated model system.
C-Laurdan generalized polarization (GP) measurements were applied to probe the temperature-dependent polarity of hybrid membranes consisting of a lipid monolayer adsorbed onto a polylactic acid (PLA) polymer core as function of lipid composition. |
doi_str_mv | 10.1039/d3nr06464f |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d3nr06464f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3049668210</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-95c4490b698435efc86807e95e76710b3659227861cc4ccf8da4ba22ed38d51e3</originalsourceid><addsrcrecordid>eNpdkc9rFTEQx4NYbH168a4seBFhNZtJsslJpFqrVAXRc8gms5qSt9kmu4X33xt97fPHaQbmw5eZ-RDyqKMvOgr6pYcpU8klH--QE0Y5bQF6dvfQS35M7pdySanUIOEeOQYltADGTsiHj7gdsp2wGeMafFh2zZzTjHkJWJo0NjHMwbcu2QV9M6e4i9YtwTXWBd9MdkqzrayLWB6Qo9HGgg9v6oZ8O3v79fS8vfj87v3p64vWgVJLq4XjXNNBasVB4OiUVLRHLbCXfUcHkEIz1ivZOcedG5W3fLCMoQflRYewIa_2ufM6bNE7nJZso5lz2Nq8M8kG8-9kCj_M93Rtuq5-qe91TXh2k5DT1YplMdtQHMZY_5DWYoCCEJzu0af_oZdpzVO9r1JcS6lYdbAhz_eUy6mUjONhm46aX47MG_j05bejswo_-Xv_A3orpQKP90Au7jD9Ixl-AtTplsg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049668210</pqid></control><display><type>article</type><title>Membrane fluidity properties of lipid-coated polylactic acid nanoparticles</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals</source><creator>Gu, Yuanqing ; Reinhard, Björn M</creator><creatorcontrib>Gu, Yuanqing ; Reinhard, Björn M</creatorcontrib><description>Lipid coating is considered a versatile strategy to equip nanoparticles (NPs) with a biomimetic surface coating, but the membrane properties of these nanoassemblies remain in many cases insufficiently understood. In this work, we apply C-Laurdan generalized polarization (GP) measurements to probe the temperature-dependent polarity of hybrid membranes consisting of a lipid monolayer adsorbed onto a polylactic acid (PLA) polymer core as function of lipid composition and compare the behavior of the lipid coated NPs (LNPs) with that of liposomes assembled from identical lipid mixtures. The LNPs were generated by nanoprecipitation of the polymer in aqueous solutions containing two types of lipid mixtures: (i) cholesterol, dipalmitoylphosphatidylcholine (DPPC), and the ganglioside GM3, as well as (ii) dioleoylphosphatidylcholine (DOPC), DPPC and GM3. LNPs were found to exhibit more distinct and narrower phase transitions than corresponding liposomes and to retain detectable phase transitions even for cholesterol or DOPC concentrations that yielded no detectable transitions in liposomes. These findings together with higher GP values in the case of the LNPs for temperatures above the phase transition temperature indicate a stabilization of the membrane through the polymer core. LNP binding studies to GM3-recognizing cells indicate that differences in the membrane fluidity affect binding avidity in the investigated model system.
C-Laurdan generalized polarization (GP) measurements were applied to probe the temperature-dependent polarity of hybrid membranes consisting of a lipid monolayer adsorbed onto a polylactic acid (PLA) polymer core as function of lipid composition.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d3nr06464f</identifier><identifier>PMID: 38595322</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>1,2-Dipalmitoylphosphatidylcholine - chemistry ; Aqueous solutions ; Binding ; Biomimetics ; Chemistry ; Cholesterol ; Cholesterol - chemistry ; Dipalmitoyl phosphatidylcholine ; G(M3) Ganglioside - chemistry ; Lactic Acid - chemistry ; Lipids ; Lipids - chemistry ; Liposomes ; Liposomes - chemistry ; Membrane Fluidity ; Membranes ; Mixtures ; Nanoparticles ; Nanoparticles - chemistry ; Phase transitions ; Polyesters - chemistry ; Polylactic acid ; Polymers ; Polymers - chemistry ; Temperature ; Temperature dependence ; Transition temperature</subject><ispartof>Nanoscale, 2024-05, Vol.16 (17), p.8533-8545</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><rights>This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c388t-95c4490b698435efc86807e95e76710b3659227861cc4ccf8da4ba22ed38d51e3</cites><orcidid>0009-0001-8919-3368 ; 0000-0003-2550-5331</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,782,786,887,27931,27932</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38595322$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gu, Yuanqing</creatorcontrib><creatorcontrib>Reinhard, Björn M</creatorcontrib><title>Membrane fluidity properties of lipid-coated polylactic acid nanoparticles</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Lipid coating is considered a versatile strategy to equip nanoparticles (NPs) with a biomimetic surface coating, but the membrane properties of these nanoassemblies remain in many cases insufficiently understood. In this work, we apply C-Laurdan generalized polarization (GP) measurements to probe the temperature-dependent polarity of hybrid membranes consisting of a lipid monolayer adsorbed onto a polylactic acid (PLA) polymer core as function of lipid composition and compare the behavior of the lipid coated NPs (LNPs) with that of liposomes assembled from identical lipid mixtures. The LNPs were generated by nanoprecipitation of the polymer in aqueous solutions containing two types of lipid mixtures: (i) cholesterol, dipalmitoylphosphatidylcholine (DPPC), and the ganglioside GM3, as well as (ii) dioleoylphosphatidylcholine (DOPC), DPPC and GM3. LNPs were found to exhibit more distinct and narrower phase transitions than corresponding liposomes and to retain detectable phase transitions even for cholesterol or DOPC concentrations that yielded no detectable transitions in liposomes. These findings together with higher GP values in the case of the LNPs for temperatures above the phase transition temperature indicate a stabilization of the membrane through the polymer core. LNP binding studies to GM3-recognizing cells indicate that differences in the membrane fluidity affect binding avidity in the investigated model system.
C-Laurdan generalized polarization (GP) measurements were applied to probe the temperature-dependent polarity of hybrid membranes consisting of a lipid monolayer adsorbed onto a polylactic acid (PLA) polymer core as function of lipid composition.</description><subject>1,2-Dipalmitoylphosphatidylcholine - chemistry</subject><subject>Aqueous solutions</subject><subject>Binding</subject><subject>Biomimetics</subject><subject>Chemistry</subject><subject>Cholesterol</subject><subject>Cholesterol - chemistry</subject><subject>Dipalmitoyl phosphatidylcholine</subject><subject>G(M3) Ganglioside - chemistry</subject><subject>Lactic Acid - chemistry</subject><subject>Lipids</subject><subject>Lipids - chemistry</subject><subject>Liposomes</subject><subject>Liposomes - chemistry</subject><subject>Membrane Fluidity</subject><subject>Membranes</subject><subject>Mixtures</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Phase transitions</subject><subject>Polyesters - chemistry</subject><subject>Polylactic acid</subject><subject>Polymers</subject><subject>Polymers - chemistry</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Transition temperature</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc9rFTEQx4NYbH168a4seBFhNZtJsslJpFqrVAXRc8gms5qSt9kmu4X33xt97fPHaQbmw5eZ-RDyqKMvOgr6pYcpU8klH--QE0Y5bQF6dvfQS35M7pdySanUIOEeOQYltADGTsiHj7gdsp2wGeMafFh2zZzTjHkJWJo0NjHMwbcu2QV9M6e4i9YtwTXWBd9MdkqzrayLWB6Qo9HGgg9v6oZ8O3v79fS8vfj87v3p64vWgVJLq4XjXNNBasVB4OiUVLRHLbCXfUcHkEIz1ivZOcedG5W3fLCMoQflRYewIa_2ufM6bNE7nJZso5lz2Nq8M8kG8-9kCj_M93Rtuq5-qe91TXh2k5DT1YplMdtQHMZY_5DWYoCCEJzu0af_oZdpzVO9r1JcS6lYdbAhz_eUy6mUjONhm46aX47MG_j05bejswo_-Xv_A3orpQKP90Au7jD9Ixl-AtTplsg</recordid><startdate>20240502</startdate><enddate>20240502</enddate><creator>Gu, Yuanqing</creator><creator>Reinhard, Björn M</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0009-0001-8919-3368</orcidid><orcidid>https://orcid.org/0000-0003-2550-5331</orcidid></search><sort><creationdate>20240502</creationdate><title>Membrane fluidity properties of lipid-coated polylactic acid nanoparticles</title><author>Gu, Yuanqing ; Reinhard, Björn M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-95c4490b698435efc86807e95e76710b3659227861cc4ccf8da4ba22ed38d51e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>1,2-Dipalmitoylphosphatidylcholine - chemistry</topic><topic>Aqueous solutions</topic><topic>Binding</topic><topic>Biomimetics</topic><topic>Chemistry</topic><topic>Cholesterol</topic><topic>Cholesterol - chemistry</topic><topic>Dipalmitoyl phosphatidylcholine</topic><topic>G(M3) Ganglioside - chemistry</topic><topic>Lactic Acid - chemistry</topic><topic>Lipids</topic><topic>Lipids - chemistry</topic><topic>Liposomes</topic><topic>Liposomes - chemistry</topic><topic>Membrane Fluidity</topic><topic>Membranes</topic><topic>Mixtures</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Phase transitions</topic><topic>Polyesters - chemistry</topic><topic>Polylactic acid</topic><topic>Polymers</topic><topic>Polymers - chemistry</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Transition temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Yuanqing</creatorcontrib><creatorcontrib>Reinhard, Björn M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Yuanqing</au><au>Reinhard, Björn M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Membrane fluidity properties of lipid-coated polylactic acid nanoparticles</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2024-05-02</date><risdate>2024</risdate><volume>16</volume><issue>17</issue><spage>8533</spage><epage>8545</epage><pages>8533-8545</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Lipid coating is considered a versatile strategy to equip nanoparticles (NPs) with a biomimetic surface coating, but the membrane properties of these nanoassemblies remain in many cases insufficiently understood. In this work, we apply C-Laurdan generalized polarization (GP) measurements to probe the temperature-dependent polarity of hybrid membranes consisting of a lipid monolayer adsorbed onto a polylactic acid (PLA) polymer core as function of lipid composition and compare the behavior of the lipid coated NPs (LNPs) with that of liposomes assembled from identical lipid mixtures. The LNPs were generated by nanoprecipitation of the polymer in aqueous solutions containing two types of lipid mixtures: (i) cholesterol, dipalmitoylphosphatidylcholine (DPPC), and the ganglioside GM3, as well as (ii) dioleoylphosphatidylcholine (DOPC), DPPC and GM3. LNPs were found to exhibit more distinct and narrower phase transitions than corresponding liposomes and to retain detectable phase transitions even for cholesterol or DOPC concentrations that yielded no detectable transitions in liposomes. These findings together with higher GP values in the case of the LNPs for temperatures above the phase transition temperature indicate a stabilization of the membrane through the polymer core. LNP binding studies to GM3-recognizing cells indicate that differences in the membrane fluidity affect binding avidity in the investigated model system.
C-Laurdan generalized polarization (GP) measurements were applied to probe the temperature-dependent polarity of hybrid membranes consisting of a lipid monolayer adsorbed onto a polylactic acid (PLA) polymer core as function of lipid composition.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>38595322</pmid><doi>10.1039/d3nr06464f</doi><tpages>13</tpages><orcidid>https://orcid.org/0009-0001-8919-3368</orcidid><orcidid>https://orcid.org/0000-0003-2550-5331</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2024-05, Vol.16 (17), p.8533-8545 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_rsc_primary_d3nr06464f |
source | MEDLINE; Royal Society Of Chemistry Journals |
subjects | 1,2-Dipalmitoylphosphatidylcholine - chemistry Aqueous solutions Binding Biomimetics Chemistry Cholesterol Cholesterol - chemistry Dipalmitoyl phosphatidylcholine G(M3) Ganglioside - chemistry Lactic Acid - chemistry Lipids Lipids - chemistry Liposomes Liposomes - chemistry Membrane Fluidity Membranes Mixtures Nanoparticles Nanoparticles - chemistry Phase transitions Polyesters - chemistry Polylactic acid Polymers Polymers - chemistry Temperature Temperature dependence Transition temperature |
title | Membrane fluidity properties of lipid-coated polylactic acid nanoparticles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T07%3A34%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Membrane%20fluidity%20properties%20of%20lipid-coated%20polylactic%20acid%20nanoparticles&rft.jtitle=Nanoscale&rft.au=Gu,%20Yuanqing&rft.date=2024-05-02&rft.volume=16&rft.issue=17&rft.spage=8533&rft.epage=8545&rft.pages=8533-8545&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d3nr06464f&rft_dat=%3Cproquest_rsc_p%3E3049668210%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3049668210&rft_id=info:pmid/38595322&rfr_iscdi=true |