Membrane fluidity properties of lipid-coated polylactic acid nanoparticles

Lipid coating is considered a versatile strategy to equip nanoparticles (NPs) with a biomimetic surface coating, but the membrane properties of these nanoassemblies remain in many cases insufficiently understood. In this work, we apply C-Laurdan generalized polarization (GP) measurements to probe th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2024-05, Vol.16 (17), p.8533-8545
Hauptverfasser: Gu, Yuanqing, Reinhard, Björn M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8545
container_issue 17
container_start_page 8533
container_title Nanoscale
container_volume 16
creator Gu, Yuanqing
Reinhard, Björn M
description Lipid coating is considered a versatile strategy to equip nanoparticles (NPs) with a biomimetic surface coating, but the membrane properties of these nanoassemblies remain in many cases insufficiently understood. In this work, we apply C-Laurdan generalized polarization (GP) measurements to probe the temperature-dependent polarity of hybrid membranes consisting of a lipid monolayer adsorbed onto a polylactic acid (PLA) polymer core as function of lipid composition and compare the behavior of the lipid coated NPs (LNPs) with that of liposomes assembled from identical lipid mixtures. The LNPs were generated by nanoprecipitation of the polymer in aqueous solutions containing two types of lipid mixtures: (i) cholesterol, dipalmitoylphosphatidylcholine (DPPC), and the ganglioside GM3, as well as (ii) dioleoylphosphatidylcholine (DOPC), DPPC and GM3. LNPs were found to exhibit more distinct and narrower phase transitions than corresponding liposomes and to retain detectable phase transitions even for cholesterol or DOPC concentrations that yielded no detectable transitions in liposomes. These findings together with higher GP values in the case of the LNPs for temperatures above the phase transition temperature indicate a stabilization of the membrane through the polymer core. LNP binding studies to GM3-recognizing cells indicate that differences in the membrane fluidity affect binding avidity in the investigated model system. C-Laurdan generalized polarization (GP) measurements were applied to probe the temperature-dependent polarity of hybrid membranes consisting of a lipid monolayer adsorbed onto a polylactic acid (PLA) polymer core as function of lipid composition.
doi_str_mv 10.1039/d3nr06464f
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d3nr06464f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3049668210</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-95c4490b698435efc86807e95e76710b3659227861cc4ccf8da4ba22ed38d51e3</originalsourceid><addsrcrecordid>eNpdkc9rFTEQx4NYbH168a4seBFhNZtJsslJpFqrVAXRc8gms5qSt9kmu4X33xt97fPHaQbmw5eZ-RDyqKMvOgr6pYcpU8klH--QE0Y5bQF6dvfQS35M7pdySanUIOEeOQYltADGTsiHj7gdsp2wGeMafFh2zZzTjHkJWJo0NjHMwbcu2QV9M6e4i9YtwTXWBd9MdkqzrayLWB6Qo9HGgg9v6oZ8O3v79fS8vfj87v3p64vWgVJLq4XjXNNBasVB4OiUVLRHLbCXfUcHkEIz1ivZOcedG5W3fLCMoQflRYewIa_2ufM6bNE7nJZso5lz2Nq8M8kG8-9kCj_M93Rtuq5-qe91TXh2k5DT1YplMdtQHMZY_5DWYoCCEJzu0af_oZdpzVO9r1JcS6lYdbAhz_eUy6mUjONhm46aX47MG_j05bejswo_-Xv_A3orpQKP90Au7jD9Ixl-AtTplsg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049668210</pqid></control><display><type>article</type><title>Membrane fluidity properties of lipid-coated polylactic acid nanoparticles</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals</source><creator>Gu, Yuanqing ; Reinhard, Björn M</creator><creatorcontrib>Gu, Yuanqing ; Reinhard, Björn M</creatorcontrib><description>Lipid coating is considered a versatile strategy to equip nanoparticles (NPs) with a biomimetic surface coating, but the membrane properties of these nanoassemblies remain in many cases insufficiently understood. In this work, we apply C-Laurdan generalized polarization (GP) measurements to probe the temperature-dependent polarity of hybrid membranes consisting of a lipid monolayer adsorbed onto a polylactic acid (PLA) polymer core as function of lipid composition and compare the behavior of the lipid coated NPs (LNPs) with that of liposomes assembled from identical lipid mixtures. The LNPs were generated by nanoprecipitation of the polymer in aqueous solutions containing two types of lipid mixtures: (i) cholesterol, dipalmitoylphosphatidylcholine (DPPC), and the ganglioside GM3, as well as (ii) dioleoylphosphatidylcholine (DOPC), DPPC and GM3. LNPs were found to exhibit more distinct and narrower phase transitions than corresponding liposomes and to retain detectable phase transitions even for cholesterol or DOPC concentrations that yielded no detectable transitions in liposomes. These findings together with higher GP values in the case of the LNPs for temperatures above the phase transition temperature indicate a stabilization of the membrane through the polymer core. LNP binding studies to GM3-recognizing cells indicate that differences in the membrane fluidity affect binding avidity in the investigated model system. C-Laurdan generalized polarization (GP) measurements were applied to probe the temperature-dependent polarity of hybrid membranes consisting of a lipid monolayer adsorbed onto a polylactic acid (PLA) polymer core as function of lipid composition.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d3nr06464f</identifier><identifier>PMID: 38595322</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>1,2-Dipalmitoylphosphatidylcholine - chemistry ; Aqueous solutions ; Binding ; Biomimetics ; Chemistry ; Cholesterol ; Cholesterol - chemistry ; Dipalmitoyl phosphatidylcholine ; G(M3) Ganglioside - chemistry ; Lactic Acid - chemistry ; Lipids ; Lipids - chemistry ; Liposomes ; Liposomes - chemistry ; Membrane Fluidity ; Membranes ; Mixtures ; Nanoparticles ; Nanoparticles - chemistry ; Phase transitions ; Polyesters - chemistry ; Polylactic acid ; Polymers ; Polymers - chemistry ; Temperature ; Temperature dependence ; Transition temperature</subject><ispartof>Nanoscale, 2024-05, Vol.16 (17), p.8533-8545</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><rights>This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c388t-95c4490b698435efc86807e95e76710b3659227861cc4ccf8da4ba22ed38d51e3</cites><orcidid>0009-0001-8919-3368 ; 0000-0003-2550-5331</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,782,786,887,27931,27932</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38595322$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gu, Yuanqing</creatorcontrib><creatorcontrib>Reinhard, Björn M</creatorcontrib><title>Membrane fluidity properties of lipid-coated polylactic acid nanoparticles</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Lipid coating is considered a versatile strategy to equip nanoparticles (NPs) with a biomimetic surface coating, but the membrane properties of these nanoassemblies remain in many cases insufficiently understood. In this work, we apply C-Laurdan generalized polarization (GP) measurements to probe the temperature-dependent polarity of hybrid membranes consisting of a lipid monolayer adsorbed onto a polylactic acid (PLA) polymer core as function of lipid composition and compare the behavior of the lipid coated NPs (LNPs) with that of liposomes assembled from identical lipid mixtures. The LNPs were generated by nanoprecipitation of the polymer in aqueous solutions containing two types of lipid mixtures: (i) cholesterol, dipalmitoylphosphatidylcholine (DPPC), and the ganglioside GM3, as well as (ii) dioleoylphosphatidylcholine (DOPC), DPPC and GM3. LNPs were found to exhibit more distinct and narrower phase transitions than corresponding liposomes and to retain detectable phase transitions even for cholesterol or DOPC concentrations that yielded no detectable transitions in liposomes. These findings together with higher GP values in the case of the LNPs for temperatures above the phase transition temperature indicate a stabilization of the membrane through the polymer core. LNP binding studies to GM3-recognizing cells indicate that differences in the membrane fluidity affect binding avidity in the investigated model system. C-Laurdan generalized polarization (GP) measurements were applied to probe the temperature-dependent polarity of hybrid membranes consisting of a lipid monolayer adsorbed onto a polylactic acid (PLA) polymer core as function of lipid composition.</description><subject>1,2-Dipalmitoylphosphatidylcholine - chemistry</subject><subject>Aqueous solutions</subject><subject>Binding</subject><subject>Biomimetics</subject><subject>Chemistry</subject><subject>Cholesterol</subject><subject>Cholesterol - chemistry</subject><subject>Dipalmitoyl phosphatidylcholine</subject><subject>G(M3) Ganglioside - chemistry</subject><subject>Lactic Acid - chemistry</subject><subject>Lipids</subject><subject>Lipids - chemistry</subject><subject>Liposomes</subject><subject>Liposomes - chemistry</subject><subject>Membrane Fluidity</subject><subject>Membranes</subject><subject>Mixtures</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Phase transitions</subject><subject>Polyesters - chemistry</subject><subject>Polylactic acid</subject><subject>Polymers</subject><subject>Polymers - chemistry</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Transition temperature</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc9rFTEQx4NYbH168a4seBFhNZtJsslJpFqrVAXRc8gms5qSt9kmu4X33xt97fPHaQbmw5eZ-RDyqKMvOgr6pYcpU8klH--QE0Y5bQF6dvfQS35M7pdySanUIOEeOQYltADGTsiHj7gdsp2wGeMafFh2zZzTjHkJWJo0NjHMwbcu2QV9M6e4i9YtwTXWBd9MdkqzrayLWB6Qo9HGgg9v6oZ8O3v79fS8vfj87v3p64vWgVJLq4XjXNNBasVB4OiUVLRHLbCXfUcHkEIz1ivZOcedG5W3fLCMoQflRYewIa_2ufM6bNE7nJZso5lz2Nq8M8kG8-9kCj_M93Rtuq5-qe91TXh2k5DT1YplMdtQHMZY_5DWYoCCEJzu0af_oZdpzVO9r1JcS6lYdbAhz_eUy6mUjONhm46aX47MG_j05bejswo_-Xv_A3orpQKP90Au7jD9Ixl-AtTplsg</recordid><startdate>20240502</startdate><enddate>20240502</enddate><creator>Gu, Yuanqing</creator><creator>Reinhard, Björn M</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0009-0001-8919-3368</orcidid><orcidid>https://orcid.org/0000-0003-2550-5331</orcidid></search><sort><creationdate>20240502</creationdate><title>Membrane fluidity properties of lipid-coated polylactic acid nanoparticles</title><author>Gu, Yuanqing ; Reinhard, Björn M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-95c4490b698435efc86807e95e76710b3659227861cc4ccf8da4ba22ed38d51e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>1,2-Dipalmitoylphosphatidylcholine - chemistry</topic><topic>Aqueous solutions</topic><topic>Binding</topic><topic>Biomimetics</topic><topic>Chemistry</topic><topic>Cholesterol</topic><topic>Cholesterol - chemistry</topic><topic>Dipalmitoyl phosphatidylcholine</topic><topic>G(M3) Ganglioside - chemistry</topic><topic>Lactic Acid - chemistry</topic><topic>Lipids</topic><topic>Lipids - chemistry</topic><topic>Liposomes</topic><topic>Liposomes - chemistry</topic><topic>Membrane Fluidity</topic><topic>Membranes</topic><topic>Mixtures</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Phase transitions</topic><topic>Polyesters - chemistry</topic><topic>Polylactic acid</topic><topic>Polymers</topic><topic>Polymers - chemistry</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Transition temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Yuanqing</creatorcontrib><creatorcontrib>Reinhard, Björn M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Yuanqing</au><au>Reinhard, Björn M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Membrane fluidity properties of lipid-coated polylactic acid nanoparticles</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2024-05-02</date><risdate>2024</risdate><volume>16</volume><issue>17</issue><spage>8533</spage><epage>8545</epage><pages>8533-8545</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Lipid coating is considered a versatile strategy to equip nanoparticles (NPs) with a biomimetic surface coating, but the membrane properties of these nanoassemblies remain in many cases insufficiently understood. In this work, we apply C-Laurdan generalized polarization (GP) measurements to probe the temperature-dependent polarity of hybrid membranes consisting of a lipid monolayer adsorbed onto a polylactic acid (PLA) polymer core as function of lipid composition and compare the behavior of the lipid coated NPs (LNPs) with that of liposomes assembled from identical lipid mixtures. The LNPs were generated by nanoprecipitation of the polymer in aqueous solutions containing two types of lipid mixtures: (i) cholesterol, dipalmitoylphosphatidylcholine (DPPC), and the ganglioside GM3, as well as (ii) dioleoylphosphatidylcholine (DOPC), DPPC and GM3. LNPs were found to exhibit more distinct and narrower phase transitions than corresponding liposomes and to retain detectable phase transitions even for cholesterol or DOPC concentrations that yielded no detectable transitions in liposomes. These findings together with higher GP values in the case of the LNPs for temperatures above the phase transition temperature indicate a stabilization of the membrane through the polymer core. LNP binding studies to GM3-recognizing cells indicate that differences in the membrane fluidity affect binding avidity in the investigated model system. C-Laurdan generalized polarization (GP) measurements were applied to probe the temperature-dependent polarity of hybrid membranes consisting of a lipid monolayer adsorbed onto a polylactic acid (PLA) polymer core as function of lipid composition.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>38595322</pmid><doi>10.1039/d3nr06464f</doi><tpages>13</tpages><orcidid>https://orcid.org/0009-0001-8919-3368</orcidid><orcidid>https://orcid.org/0000-0003-2550-5331</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2024-05, Vol.16 (17), p.8533-8545
issn 2040-3364
2040-3372
language eng
recordid cdi_rsc_primary_d3nr06464f
source MEDLINE; Royal Society Of Chemistry Journals
subjects 1,2-Dipalmitoylphosphatidylcholine - chemistry
Aqueous solutions
Binding
Biomimetics
Chemistry
Cholesterol
Cholesterol - chemistry
Dipalmitoyl phosphatidylcholine
G(M3) Ganglioside - chemistry
Lactic Acid - chemistry
Lipids
Lipids - chemistry
Liposomes
Liposomes - chemistry
Membrane Fluidity
Membranes
Mixtures
Nanoparticles
Nanoparticles - chemistry
Phase transitions
Polyesters - chemistry
Polylactic acid
Polymers
Polymers - chemistry
Temperature
Temperature dependence
Transition temperature
title Membrane fluidity properties of lipid-coated polylactic acid nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T07%3A34%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Membrane%20fluidity%20properties%20of%20lipid-coated%20polylactic%20acid%20nanoparticles&rft.jtitle=Nanoscale&rft.au=Gu,%20Yuanqing&rft.date=2024-05-02&rft.volume=16&rft.issue=17&rft.spage=8533&rft.epage=8545&rft.pages=8533-8545&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d3nr06464f&rft_dat=%3Cproquest_rsc_p%3E3049668210%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3049668210&rft_id=info:pmid/38595322&rfr_iscdi=true