On the unique temperature-dependent interplay of a B-exciton and its trion in monolayer MoSe
Plasmonics in metal nanoparticles can enhance their near field optical interaction with matter, promoting emission into selected optical modes. Here, using Ga nanoparticles with carefully tuned plasmonic resonance in proximity to MoSe 2 monolayers, we show selective photoluminescence enhancement fro...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2024-02, Vol.16 (5), p.2632-2641 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2641 |
---|---|
container_issue | 5 |
container_start_page | 2632 |
container_title | Nanoscale |
container_volume | 16 |
creator | Banswar, Durgesh Sahu, Renu Raman Srivatsava, Rupali Hassan, Md. Samim Singh, Sahil Sapra, Sameer Das Gupta, Tapajyoti Goswami, Ankur Balasubramanian, Krishna |
description | Plasmonics in metal nanoparticles can enhance their near field optical interaction with matter, promoting emission into selected optical modes. Here, using Ga nanoparticles with carefully tuned plasmonic resonance in proximity to MoSe
2
monolayers, we show selective photoluminescence enhancement from the B-exciton and its trion with no observable A-exciton emission. The nanoengineered substrate allows for the first direct experimental observation of the B-trion binding energy in semiconducting monolayers. Using temperature-dependent photoluminescence measurements, we show the following features of the MoSe
2
B-exciton family: (i) the trion binding energy has an observable temperature dependence with a decreasing trend towards low temperatures and (ii) the excitontrion emission ratio varies non-monotonically with temperature with a steep increase in the trion emission at lower temperatures. Using detailed models, we identify the particle size required for selective excitation and describe the underlying physical processes. This opens newer avenues for selectively promoting excitonic species and tuning the effective particle lifetimes in monolayer semiconductors. These results demonstrate the excellent plasmonic properties of Ga nanoparticles, which along with facile processing techniques makes it an attractive alternative to the prevalent noble metal plasmonics having applications in flexible/stretchable materials and textiles.
Plasmonics in metal nanoparticles can enhance their near field optical interaction with matter, promoting emission into selected optical modes. |
doi_str_mv | 10.1039/d3nr05677e |
format | Article |
fullrecord | <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_d3nr05677e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d3nr05677e</sourcerecordid><originalsourceid>FETCH-rsc_primary_d3nr05677e3</originalsourceid><addsrcrecordid>eNqFjj0LwkAQRA9R8LOxF_YPRC9eTLBVFBux0FIIR7LiSbIX9y5g_r0pREurmce8YoSYhnIeSrVe5IpYruIkwY4YLGUkA6WSZffb46gvhs49pIzXKlYDcT0R-DtCTeZZI3gsK2Tta8YgxwopR_JgyCNXhW7A3kDDJsBXZrwl0JSD8Q48m5YMQWnJth4yHO0Zx6J304XDySdHYrbfXbaHgF2WVmxKzU36u6z-7W92DkVb</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the unique temperature-dependent interplay of a B-exciton and its trion in monolayer MoSe</title><source>Royal Society Of Chemistry Journals</source><creator>Banswar, Durgesh ; Sahu, Renu Raman ; Srivatsava, Rupali ; Hassan, Md. Samim ; Singh, Sahil ; Sapra, Sameer ; Das Gupta, Tapajyoti ; Goswami, Ankur ; Balasubramanian, Krishna</creator><creatorcontrib>Banswar, Durgesh ; Sahu, Renu Raman ; Srivatsava, Rupali ; Hassan, Md. Samim ; Singh, Sahil ; Sapra, Sameer ; Das Gupta, Tapajyoti ; Goswami, Ankur ; Balasubramanian, Krishna</creatorcontrib><description>Plasmonics in metal nanoparticles can enhance their near field optical interaction with matter, promoting emission into selected optical modes. Here, using Ga nanoparticles with carefully tuned plasmonic resonance in proximity to MoSe
2
monolayers, we show selective photoluminescence enhancement from the B-exciton and its trion with no observable A-exciton emission. The nanoengineered substrate allows for the first direct experimental observation of the B-trion binding energy in semiconducting monolayers. Using temperature-dependent photoluminescence measurements, we show the following features of the MoSe
2
B-exciton family: (i) the trion binding energy has an observable temperature dependence with a decreasing trend towards low temperatures and (ii) the excitontrion emission ratio varies non-monotonically with temperature with a steep increase in the trion emission at lower temperatures. Using detailed models, we identify the particle size required for selective excitation and describe the underlying physical processes. This opens newer avenues for selectively promoting excitonic species and tuning the effective particle lifetimes in monolayer semiconductors. These results demonstrate the excellent plasmonic properties of Ga nanoparticles, which along with facile processing techniques makes it an attractive alternative to the prevalent noble metal plasmonics having applications in flexible/stretchable materials and textiles.
Plasmonics in metal nanoparticles can enhance their near field optical interaction with matter, promoting emission into selected optical modes.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d3nr05677e</identifier><ispartof>Nanoscale, 2024-02, Vol.16 (5), p.2632-2641</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Banswar, Durgesh</creatorcontrib><creatorcontrib>Sahu, Renu Raman</creatorcontrib><creatorcontrib>Srivatsava, Rupali</creatorcontrib><creatorcontrib>Hassan, Md. Samim</creatorcontrib><creatorcontrib>Singh, Sahil</creatorcontrib><creatorcontrib>Sapra, Sameer</creatorcontrib><creatorcontrib>Das Gupta, Tapajyoti</creatorcontrib><creatorcontrib>Goswami, Ankur</creatorcontrib><creatorcontrib>Balasubramanian, Krishna</creatorcontrib><title>On the unique temperature-dependent interplay of a B-exciton and its trion in monolayer MoSe</title><title>Nanoscale</title><description>Plasmonics in metal nanoparticles can enhance their near field optical interaction with matter, promoting emission into selected optical modes. Here, using Ga nanoparticles with carefully tuned plasmonic resonance in proximity to MoSe
2
monolayers, we show selective photoluminescence enhancement from the B-exciton and its trion with no observable A-exciton emission. The nanoengineered substrate allows for the first direct experimental observation of the B-trion binding energy in semiconducting monolayers. Using temperature-dependent photoluminescence measurements, we show the following features of the MoSe
2
B-exciton family: (i) the trion binding energy has an observable temperature dependence with a decreasing trend towards low temperatures and (ii) the excitontrion emission ratio varies non-monotonically with temperature with a steep increase in the trion emission at lower temperatures. Using detailed models, we identify the particle size required for selective excitation and describe the underlying physical processes. This opens newer avenues for selectively promoting excitonic species and tuning the effective particle lifetimes in monolayer semiconductors. These results demonstrate the excellent plasmonic properties of Ga nanoparticles, which along with facile processing techniques makes it an attractive alternative to the prevalent noble metal plasmonics having applications in flexible/stretchable materials and textiles.
Plasmonics in metal nanoparticles can enhance their near field optical interaction with matter, promoting emission into selected optical modes.</description><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFjj0LwkAQRA9R8LOxF_YPRC9eTLBVFBux0FIIR7LiSbIX9y5g_r0pREurmce8YoSYhnIeSrVe5IpYruIkwY4YLGUkA6WSZffb46gvhs49pIzXKlYDcT0R-DtCTeZZI3gsK2Tta8YgxwopR_JgyCNXhW7A3kDDJsBXZrwl0JSD8Q48m5YMQWnJth4yHO0Zx6J304XDySdHYrbfXbaHgF2WVmxKzU36u6z-7W92DkVb</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Banswar, Durgesh</creator><creator>Sahu, Renu Raman</creator><creator>Srivatsava, Rupali</creator><creator>Hassan, Md. Samim</creator><creator>Singh, Sahil</creator><creator>Sapra, Sameer</creator><creator>Das Gupta, Tapajyoti</creator><creator>Goswami, Ankur</creator><creator>Balasubramanian, Krishna</creator><scope/></search><sort><creationdate>20240201</creationdate><title>On the unique temperature-dependent interplay of a B-exciton and its trion in monolayer MoSe</title><author>Banswar, Durgesh ; Sahu, Renu Raman ; Srivatsava, Rupali ; Hassan, Md. Samim ; Singh, Sahil ; Sapra, Sameer ; Das Gupta, Tapajyoti ; Goswami, Ankur ; Balasubramanian, Krishna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_d3nr05677e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Banswar, Durgesh</creatorcontrib><creatorcontrib>Sahu, Renu Raman</creatorcontrib><creatorcontrib>Srivatsava, Rupali</creatorcontrib><creatorcontrib>Hassan, Md. Samim</creatorcontrib><creatorcontrib>Singh, Sahil</creatorcontrib><creatorcontrib>Sapra, Sameer</creatorcontrib><creatorcontrib>Das Gupta, Tapajyoti</creatorcontrib><creatorcontrib>Goswami, Ankur</creatorcontrib><creatorcontrib>Balasubramanian, Krishna</creatorcontrib><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banswar, Durgesh</au><au>Sahu, Renu Raman</au><au>Srivatsava, Rupali</au><au>Hassan, Md. Samim</au><au>Singh, Sahil</au><au>Sapra, Sameer</au><au>Das Gupta, Tapajyoti</au><au>Goswami, Ankur</au><au>Balasubramanian, Krishna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the unique temperature-dependent interplay of a B-exciton and its trion in monolayer MoSe</atitle><jtitle>Nanoscale</jtitle><date>2024-02-01</date><risdate>2024</risdate><volume>16</volume><issue>5</issue><spage>2632</spage><epage>2641</epage><pages>2632-2641</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Plasmonics in metal nanoparticles can enhance their near field optical interaction with matter, promoting emission into selected optical modes. Here, using Ga nanoparticles with carefully tuned plasmonic resonance in proximity to MoSe
2
monolayers, we show selective photoluminescence enhancement from the B-exciton and its trion with no observable A-exciton emission. The nanoengineered substrate allows for the first direct experimental observation of the B-trion binding energy in semiconducting monolayers. Using temperature-dependent photoluminescence measurements, we show the following features of the MoSe
2
B-exciton family: (i) the trion binding energy has an observable temperature dependence with a decreasing trend towards low temperatures and (ii) the excitontrion emission ratio varies non-monotonically with temperature with a steep increase in the trion emission at lower temperatures. Using detailed models, we identify the particle size required for selective excitation and describe the underlying physical processes. This opens newer avenues for selectively promoting excitonic species and tuning the effective particle lifetimes in monolayer semiconductors. These results demonstrate the excellent plasmonic properties of Ga nanoparticles, which along with facile processing techniques makes it an attractive alternative to the prevalent noble metal plasmonics having applications in flexible/stretchable materials and textiles.
Plasmonics in metal nanoparticles can enhance their near field optical interaction with matter, promoting emission into selected optical modes.</abstract><doi>10.1039/d3nr05677e</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2024-02, Vol.16 (5), p.2632-2641 |
issn | 2040-3364 2040-3372 |
language | |
recordid | cdi_rsc_primary_d3nr05677e |
source | Royal Society Of Chemistry Journals |
title | On the unique temperature-dependent interplay of a B-exciton and its trion in monolayer MoSe |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T19%3A51%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20unique%20temperature-dependent%20interplay%20of%20a%20B-exciton%20and%20its%20trion%20in%20monolayer%20MoSe&rft.jtitle=Nanoscale&rft.au=Banswar,%20Durgesh&rft.date=2024-02-01&rft.volume=16&rft.issue=5&rft.spage=2632&rft.epage=2641&rft.pages=2632-2641&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d3nr05677e&rft_dat=%3Crsc%3Ed3nr05677e%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |