Thermal dynamics of few-layer-graphene seals

Being of atomic thickness, graphene is the thinnest imaginable membrane. While graphene's basal plane is highly impermeable at the molecular level, the impermeability is, in practice, compromised by leakage pathways located at the graphene-substrate interface. Here, we provide a kinetic analysi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2023-11, Vol.15 (42), p.16896-1693
Hauptverfasser: Rørbech Ambjørner, Hjalte, Bjørnlund, Anton Simon, Bonczyk, Tobias Georg, Dollekamp, Edwin, Kaas, Lau Morten, Colding-Fagerholt, Sofie, Mølhave, Kristian Speranza, Damsgaard, Christian Danvad, Helveg, Stig, Vesborg, Peter Christian Kjærgaard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1693
container_issue 42
container_start_page 16896
container_title Nanoscale
container_volume 15
creator Rørbech Ambjørner, Hjalte
Bjørnlund, Anton Simon
Bonczyk, Tobias Georg
Dollekamp, Edwin
Kaas, Lau Morten
Colding-Fagerholt, Sofie
Mølhave, Kristian Speranza
Damsgaard, Christian Danvad
Helveg, Stig
Vesborg, Peter Christian Kjærgaard
description Being of atomic thickness, graphene is the thinnest imaginable membrane. While graphene's basal plane is highly impermeable at the molecular level, the impermeability is, in practice, compromised by leakage pathways located at the graphene-substrate interface. Here, we provide a kinetic analysis of such interface-mediated leakage by probing gas trapped in graphene-sealed SiO 2 cavities versus time and temperature using electron energy loss spectroscopy. The results show that gas leakage exhibits an Arrhenius-type temperature dependency with apparent activation energies between 0.2 and 0.7 eV. Surprisingly, the interface leak rate can be improved by several orders of magnitude by thermal processing, which alters the kinetic parameters of the temperature dependency. The present study thus provides fundamental insight into the leakage mechanism while simultaneously demonstrating thermal processing as a generic approach for tightening graphene-based-seals with applications within chemistry and biology. Direct observation of gas leakage from few-layer-graphene-sealed electron transparent cavities with electron energy loss spectroscopy at elevated temperatures.
doi_str_mv 10.1039/d3nr03459c
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d3nr03459c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2885183965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-ba9ac753efd0bf13a49ea26988f50bdde561b44fde00d1f70eb22583cfa4c2143</originalsourceid><addsrcrecordid>eNpd0M1LAzEQBfAgCtbqxbuw4EXE1Ukm2U2O0voFRUHqeclmJ7ZlP2rSIv3vXa1U8PTm8OMxPMZOOVxzQHNTYRsApTJujw0ESEgRc7G_uzN5yI5iXABkBjMcsKvpjEJj66TatLaZu5h0PvH0mdZ2QyF9D3Y5o5aSSLaOx-zA90Envzlkb_d309FjOnl5eBrdTlInclylpTXW5QrJV1B6jlYasiIzWnsFZVWRyngppa8IoOI-ByqFUBqdt9IJLnHILra9y9B9rCmuimYeHdW1balbx0LoXOeco4Genv-ji24d2v67XmnFNZpM9epyq1zoYgzki2WYNzZsCg7F93DFGJ9ff4Yb9fhsi0N0O_c3LH4BxS1pCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2885183965</pqid></control><display><type>article</type><title>Thermal dynamics of few-layer-graphene seals</title><source>Royal Society Of Chemistry Journals</source><creator>Rørbech Ambjørner, Hjalte ; Bjørnlund, Anton Simon ; Bonczyk, Tobias Georg ; Dollekamp, Edwin ; Kaas, Lau Morten ; Colding-Fagerholt, Sofie ; Mølhave, Kristian Speranza ; Damsgaard, Christian Danvad ; Helveg, Stig ; Vesborg, Peter Christian Kjærgaard</creator><creatorcontrib>Rørbech Ambjørner, Hjalte ; Bjørnlund, Anton Simon ; Bonczyk, Tobias Georg ; Dollekamp, Edwin ; Kaas, Lau Morten ; Colding-Fagerholt, Sofie ; Mølhave, Kristian Speranza ; Damsgaard, Christian Danvad ; Helveg, Stig ; Vesborg, Peter Christian Kjærgaard</creatorcontrib><description>Being of atomic thickness, graphene is the thinnest imaginable membrane. While graphene's basal plane is highly impermeable at the molecular level, the impermeability is, in practice, compromised by leakage pathways located at the graphene-substrate interface. Here, we provide a kinetic analysis of such interface-mediated leakage by probing gas trapped in graphene-sealed SiO 2 cavities versus time and temperature using electron energy loss spectroscopy. The results show that gas leakage exhibits an Arrhenius-type temperature dependency with apparent activation energies between 0.2 and 0.7 eV. Surprisingly, the interface leak rate can be improved by several orders of magnitude by thermal processing, which alters the kinetic parameters of the temperature dependency. The present study thus provides fundamental insight into the leakage mechanism while simultaneously demonstrating thermal processing as a generic approach for tightening graphene-based-seals with applications within chemistry and biology. Direct observation of gas leakage from few-layer-graphene-sealed electron transparent cavities with electron energy loss spectroscopy at elevated temperatures.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d3nr03459c</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Basal plane ; Electron energy loss spectroscopy ; Graphene ; Leakage ; Permeability ; Silicon dioxide ; Substrates ; Temperature dependence</subject><ispartof>Nanoscale, 2023-11, Vol.15 (42), p.16896-1693</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c273t-ba9ac753efd0bf13a49ea26988f50bdde561b44fde00d1f70eb22583cfa4c2143</cites><orcidid>0000-0002-6896-9315 ; 0000-0001-8956-5785 ; 0000-0002-0328-8295 ; 0000-0002-6367-0939 ; 0000-0002-6493-2750 ; 0000-0002-3761-4212 ; 0000-0002-4984-9705 ; 0000-0002-0978-9154 ; 0000-0002-3117-8616 ; 0000-0002-5931-5918</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Rørbech Ambjørner, Hjalte</creatorcontrib><creatorcontrib>Bjørnlund, Anton Simon</creatorcontrib><creatorcontrib>Bonczyk, Tobias Georg</creatorcontrib><creatorcontrib>Dollekamp, Edwin</creatorcontrib><creatorcontrib>Kaas, Lau Morten</creatorcontrib><creatorcontrib>Colding-Fagerholt, Sofie</creatorcontrib><creatorcontrib>Mølhave, Kristian Speranza</creatorcontrib><creatorcontrib>Damsgaard, Christian Danvad</creatorcontrib><creatorcontrib>Helveg, Stig</creatorcontrib><creatorcontrib>Vesborg, Peter Christian Kjærgaard</creatorcontrib><title>Thermal dynamics of few-layer-graphene seals</title><title>Nanoscale</title><description>Being of atomic thickness, graphene is the thinnest imaginable membrane. While graphene's basal plane is highly impermeable at the molecular level, the impermeability is, in practice, compromised by leakage pathways located at the graphene-substrate interface. Here, we provide a kinetic analysis of such interface-mediated leakage by probing gas trapped in graphene-sealed SiO 2 cavities versus time and temperature using electron energy loss spectroscopy. The results show that gas leakage exhibits an Arrhenius-type temperature dependency with apparent activation energies between 0.2 and 0.7 eV. Surprisingly, the interface leak rate can be improved by several orders of magnitude by thermal processing, which alters the kinetic parameters of the temperature dependency. The present study thus provides fundamental insight into the leakage mechanism while simultaneously demonstrating thermal processing as a generic approach for tightening graphene-based-seals with applications within chemistry and biology. Direct observation of gas leakage from few-layer-graphene-sealed electron transparent cavities with electron energy loss spectroscopy at elevated temperatures.</description><subject>Basal plane</subject><subject>Electron energy loss spectroscopy</subject><subject>Graphene</subject><subject>Leakage</subject><subject>Permeability</subject><subject>Silicon dioxide</subject><subject>Substrates</subject><subject>Temperature dependence</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0M1LAzEQBfAgCtbqxbuw4EXE1Ukm2U2O0voFRUHqeclmJ7ZlP2rSIv3vXa1U8PTm8OMxPMZOOVxzQHNTYRsApTJujw0ESEgRc7G_uzN5yI5iXABkBjMcsKvpjEJj66TatLaZu5h0PvH0mdZ2QyF9D3Y5o5aSSLaOx-zA90Envzlkb_d309FjOnl5eBrdTlInclylpTXW5QrJV1B6jlYasiIzWnsFZVWRyngppa8IoOI-ByqFUBqdt9IJLnHILra9y9B9rCmuimYeHdW1balbx0LoXOeco4Genv-ji24d2v67XmnFNZpM9epyq1zoYgzki2WYNzZsCg7F93DFGJ9ff4Yb9fhsi0N0O_c3LH4BxS1pCw</recordid><startdate>20231102</startdate><enddate>20231102</enddate><creator>Rørbech Ambjørner, Hjalte</creator><creator>Bjørnlund, Anton Simon</creator><creator>Bonczyk, Tobias Georg</creator><creator>Dollekamp, Edwin</creator><creator>Kaas, Lau Morten</creator><creator>Colding-Fagerholt, Sofie</creator><creator>Mølhave, Kristian Speranza</creator><creator>Damsgaard, Christian Danvad</creator><creator>Helveg, Stig</creator><creator>Vesborg, Peter Christian Kjærgaard</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6896-9315</orcidid><orcidid>https://orcid.org/0000-0001-8956-5785</orcidid><orcidid>https://orcid.org/0000-0002-0328-8295</orcidid><orcidid>https://orcid.org/0000-0002-6367-0939</orcidid><orcidid>https://orcid.org/0000-0002-6493-2750</orcidid><orcidid>https://orcid.org/0000-0002-3761-4212</orcidid><orcidid>https://orcid.org/0000-0002-4984-9705</orcidid><orcidid>https://orcid.org/0000-0002-0978-9154</orcidid><orcidid>https://orcid.org/0000-0002-3117-8616</orcidid><orcidid>https://orcid.org/0000-0002-5931-5918</orcidid></search><sort><creationdate>20231102</creationdate><title>Thermal dynamics of few-layer-graphene seals</title><author>Rørbech Ambjørner, Hjalte ; Bjørnlund, Anton Simon ; Bonczyk, Tobias Georg ; Dollekamp, Edwin ; Kaas, Lau Morten ; Colding-Fagerholt, Sofie ; Mølhave, Kristian Speranza ; Damsgaard, Christian Danvad ; Helveg, Stig ; Vesborg, Peter Christian Kjærgaard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-ba9ac753efd0bf13a49ea26988f50bdde561b44fde00d1f70eb22583cfa4c2143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Basal plane</topic><topic>Electron energy loss spectroscopy</topic><topic>Graphene</topic><topic>Leakage</topic><topic>Permeability</topic><topic>Silicon dioxide</topic><topic>Substrates</topic><topic>Temperature dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rørbech Ambjørner, Hjalte</creatorcontrib><creatorcontrib>Bjørnlund, Anton Simon</creatorcontrib><creatorcontrib>Bonczyk, Tobias Georg</creatorcontrib><creatorcontrib>Dollekamp, Edwin</creatorcontrib><creatorcontrib>Kaas, Lau Morten</creatorcontrib><creatorcontrib>Colding-Fagerholt, Sofie</creatorcontrib><creatorcontrib>Mølhave, Kristian Speranza</creatorcontrib><creatorcontrib>Damsgaard, Christian Danvad</creatorcontrib><creatorcontrib>Helveg, Stig</creatorcontrib><creatorcontrib>Vesborg, Peter Christian Kjærgaard</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rørbech Ambjørner, Hjalte</au><au>Bjørnlund, Anton Simon</au><au>Bonczyk, Tobias Georg</au><au>Dollekamp, Edwin</au><au>Kaas, Lau Morten</au><au>Colding-Fagerholt, Sofie</au><au>Mølhave, Kristian Speranza</au><au>Damsgaard, Christian Danvad</au><au>Helveg, Stig</au><au>Vesborg, Peter Christian Kjærgaard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal dynamics of few-layer-graphene seals</atitle><jtitle>Nanoscale</jtitle><date>2023-11-02</date><risdate>2023</risdate><volume>15</volume><issue>42</issue><spage>16896</spage><epage>1693</epage><pages>16896-1693</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Being of atomic thickness, graphene is the thinnest imaginable membrane. While graphene's basal plane is highly impermeable at the molecular level, the impermeability is, in practice, compromised by leakage pathways located at the graphene-substrate interface. Here, we provide a kinetic analysis of such interface-mediated leakage by probing gas trapped in graphene-sealed SiO 2 cavities versus time and temperature using electron energy loss spectroscopy. The results show that gas leakage exhibits an Arrhenius-type temperature dependency with apparent activation energies between 0.2 and 0.7 eV. Surprisingly, the interface leak rate can be improved by several orders of magnitude by thermal processing, which alters the kinetic parameters of the temperature dependency. The present study thus provides fundamental insight into the leakage mechanism while simultaneously demonstrating thermal processing as a generic approach for tightening graphene-based-seals with applications within chemistry and biology. Direct observation of gas leakage from few-layer-graphene-sealed electron transparent cavities with electron energy loss spectroscopy at elevated temperatures.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3nr03459c</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6896-9315</orcidid><orcidid>https://orcid.org/0000-0001-8956-5785</orcidid><orcidid>https://orcid.org/0000-0002-0328-8295</orcidid><orcidid>https://orcid.org/0000-0002-6367-0939</orcidid><orcidid>https://orcid.org/0000-0002-6493-2750</orcidid><orcidid>https://orcid.org/0000-0002-3761-4212</orcidid><orcidid>https://orcid.org/0000-0002-4984-9705</orcidid><orcidid>https://orcid.org/0000-0002-0978-9154</orcidid><orcidid>https://orcid.org/0000-0002-3117-8616</orcidid><orcidid>https://orcid.org/0000-0002-5931-5918</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2023-11, Vol.15 (42), p.16896-1693
issn 2040-3364
2040-3372
language eng
recordid cdi_rsc_primary_d3nr03459c
source Royal Society Of Chemistry Journals
subjects Basal plane
Electron energy loss spectroscopy
Graphene
Leakage
Permeability
Silicon dioxide
Substrates
Temperature dependence
title Thermal dynamics of few-layer-graphene seals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T13%3A23%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20dynamics%20of%20few-layer-graphene%20seals&rft.jtitle=Nanoscale&rft.au=R%C3%B8rbech%20Ambj%C3%B8rner,%20Hjalte&rft.date=2023-11-02&rft.volume=15&rft.issue=42&rft.spage=16896&rft.epage=1693&rft.pages=16896-1693&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d3nr03459c&rft_dat=%3Cproquest_rsc_p%3E2885183965%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2885183965&rft_id=info:pmid/&rfr_iscdi=true