Thermal dynamics of few-layer-graphene seals
Being of atomic thickness, graphene is the thinnest imaginable membrane. While graphene's basal plane is highly impermeable at the molecular level, the impermeability is, in practice, compromised by leakage pathways located at the graphene-substrate interface. Here, we provide a kinetic analysi...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2023-11, Vol.15 (42), p.16896-1693 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1693 |
---|---|
container_issue | 42 |
container_start_page | 16896 |
container_title | Nanoscale |
container_volume | 15 |
creator | Rørbech Ambjørner, Hjalte Bjørnlund, Anton Simon Bonczyk, Tobias Georg Dollekamp, Edwin Kaas, Lau Morten Colding-Fagerholt, Sofie Mølhave, Kristian Speranza Damsgaard, Christian Danvad Helveg, Stig Vesborg, Peter Christian Kjærgaard |
description | Being of atomic thickness, graphene is the thinnest imaginable membrane. While graphene's basal plane is highly impermeable at the molecular level, the impermeability is, in practice, compromised by leakage pathways located at the graphene-substrate interface. Here, we provide a kinetic analysis of such interface-mediated leakage by probing gas trapped in graphene-sealed SiO
2
cavities
versus
time and temperature using electron energy loss spectroscopy. The results show that gas leakage exhibits an Arrhenius-type temperature dependency with apparent activation energies between 0.2 and 0.7 eV. Surprisingly, the interface leak rate can be improved by several orders of magnitude by thermal processing, which alters the kinetic parameters of the temperature dependency. The present study thus provides fundamental insight into the leakage mechanism while simultaneously demonstrating thermal processing as a generic approach for tightening graphene-based-seals with applications within chemistry and biology.
Direct observation of gas leakage from few-layer-graphene-sealed electron transparent cavities with electron energy loss spectroscopy at elevated temperatures. |
doi_str_mv | 10.1039/d3nr03459c |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d3nr03459c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2885183965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-ba9ac753efd0bf13a49ea26988f50bdde561b44fde00d1f70eb22583cfa4c2143</originalsourceid><addsrcrecordid>eNpd0M1LAzEQBfAgCtbqxbuw4EXE1Ukm2U2O0voFRUHqeclmJ7ZlP2rSIv3vXa1U8PTm8OMxPMZOOVxzQHNTYRsApTJujw0ESEgRc7G_uzN5yI5iXABkBjMcsKvpjEJj66TatLaZu5h0PvH0mdZ2QyF9D3Y5o5aSSLaOx-zA90Envzlkb_d309FjOnl5eBrdTlInclylpTXW5QrJV1B6jlYasiIzWnsFZVWRyngppa8IoOI-ByqFUBqdt9IJLnHILra9y9B9rCmuimYeHdW1balbx0LoXOeco4Genv-ji24d2v67XmnFNZpM9epyq1zoYgzki2WYNzZsCg7F93DFGJ9ff4Yb9fhsi0N0O_c3LH4BxS1pCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2885183965</pqid></control><display><type>article</type><title>Thermal dynamics of few-layer-graphene seals</title><source>Royal Society Of Chemistry Journals</source><creator>Rørbech Ambjørner, Hjalte ; Bjørnlund, Anton Simon ; Bonczyk, Tobias Georg ; Dollekamp, Edwin ; Kaas, Lau Morten ; Colding-Fagerholt, Sofie ; Mølhave, Kristian Speranza ; Damsgaard, Christian Danvad ; Helveg, Stig ; Vesborg, Peter Christian Kjærgaard</creator><creatorcontrib>Rørbech Ambjørner, Hjalte ; Bjørnlund, Anton Simon ; Bonczyk, Tobias Georg ; Dollekamp, Edwin ; Kaas, Lau Morten ; Colding-Fagerholt, Sofie ; Mølhave, Kristian Speranza ; Damsgaard, Christian Danvad ; Helveg, Stig ; Vesborg, Peter Christian Kjærgaard</creatorcontrib><description>Being of atomic thickness, graphene is the thinnest imaginable membrane. While graphene's basal plane is highly impermeable at the molecular level, the impermeability is, in practice, compromised by leakage pathways located at the graphene-substrate interface. Here, we provide a kinetic analysis of such interface-mediated leakage by probing gas trapped in graphene-sealed SiO
2
cavities
versus
time and temperature using electron energy loss spectroscopy. The results show that gas leakage exhibits an Arrhenius-type temperature dependency with apparent activation energies between 0.2 and 0.7 eV. Surprisingly, the interface leak rate can be improved by several orders of magnitude by thermal processing, which alters the kinetic parameters of the temperature dependency. The present study thus provides fundamental insight into the leakage mechanism while simultaneously demonstrating thermal processing as a generic approach for tightening graphene-based-seals with applications within chemistry and biology.
Direct observation of gas leakage from few-layer-graphene-sealed electron transparent cavities with electron energy loss spectroscopy at elevated temperatures.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d3nr03459c</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Basal plane ; Electron energy loss spectroscopy ; Graphene ; Leakage ; Permeability ; Silicon dioxide ; Substrates ; Temperature dependence</subject><ispartof>Nanoscale, 2023-11, Vol.15 (42), p.16896-1693</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c273t-ba9ac753efd0bf13a49ea26988f50bdde561b44fde00d1f70eb22583cfa4c2143</cites><orcidid>0000-0002-6896-9315 ; 0000-0001-8956-5785 ; 0000-0002-0328-8295 ; 0000-0002-6367-0939 ; 0000-0002-6493-2750 ; 0000-0002-3761-4212 ; 0000-0002-4984-9705 ; 0000-0002-0978-9154 ; 0000-0002-3117-8616 ; 0000-0002-5931-5918</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Rørbech Ambjørner, Hjalte</creatorcontrib><creatorcontrib>Bjørnlund, Anton Simon</creatorcontrib><creatorcontrib>Bonczyk, Tobias Georg</creatorcontrib><creatorcontrib>Dollekamp, Edwin</creatorcontrib><creatorcontrib>Kaas, Lau Morten</creatorcontrib><creatorcontrib>Colding-Fagerholt, Sofie</creatorcontrib><creatorcontrib>Mølhave, Kristian Speranza</creatorcontrib><creatorcontrib>Damsgaard, Christian Danvad</creatorcontrib><creatorcontrib>Helveg, Stig</creatorcontrib><creatorcontrib>Vesborg, Peter Christian Kjærgaard</creatorcontrib><title>Thermal dynamics of few-layer-graphene seals</title><title>Nanoscale</title><description>Being of atomic thickness, graphene is the thinnest imaginable membrane. While graphene's basal plane is highly impermeable at the molecular level, the impermeability is, in practice, compromised by leakage pathways located at the graphene-substrate interface. Here, we provide a kinetic analysis of such interface-mediated leakage by probing gas trapped in graphene-sealed SiO
2
cavities
versus
time and temperature using electron energy loss spectroscopy. The results show that gas leakage exhibits an Arrhenius-type temperature dependency with apparent activation energies between 0.2 and 0.7 eV. Surprisingly, the interface leak rate can be improved by several orders of magnitude by thermal processing, which alters the kinetic parameters of the temperature dependency. The present study thus provides fundamental insight into the leakage mechanism while simultaneously demonstrating thermal processing as a generic approach for tightening graphene-based-seals with applications within chemistry and biology.
Direct observation of gas leakage from few-layer-graphene-sealed electron transparent cavities with electron energy loss spectroscopy at elevated temperatures.</description><subject>Basal plane</subject><subject>Electron energy loss spectroscopy</subject><subject>Graphene</subject><subject>Leakage</subject><subject>Permeability</subject><subject>Silicon dioxide</subject><subject>Substrates</subject><subject>Temperature dependence</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0M1LAzEQBfAgCtbqxbuw4EXE1Ukm2U2O0voFRUHqeclmJ7ZlP2rSIv3vXa1U8PTm8OMxPMZOOVxzQHNTYRsApTJujw0ESEgRc7G_uzN5yI5iXABkBjMcsKvpjEJj66TatLaZu5h0PvH0mdZ2QyF9D3Y5o5aSSLaOx-zA90Envzlkb_d309FjOnl5eBrdTlInclylpTXW5QrJV1B6jlYasiIzWnsFZVWRyngppa8IoOI-ByqFUBqdt9IJLnHILra9y9B9rCmuimYeHdW1balbx0LoXOeco4Genv-ji24d2v67XmnFNZpM9epyq1zoYgzki2WYNzZsCg7F93DFGJ9ff4Yb9fhsi0N0O_c3LH4BxS1pCw</recordid><startdate>20231102</startdate><enddate>20231102</enddate><creator>Rørbech Ambjørner, Hjalte</creator><creator>Bjørnlund, Anton Simon</creator><creator>Bonczyk, Tobias Georg</creator><creator>Dollekamp, Edwin</creator><creator>Kaas, Lau Morten</creator><creator>Colding-Fagerholt, Sofie</creator><creator>Mølhave, Kristian Speranza</creator><creator>Damsgaard, Christian Danvad</creator><creator>Helveg, Stig</creator><creator>Vesborg, Peter Christian Kjærgaard</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6896-9315</orcidid><orcidid>https://orcid.org/0000-0001-8956-5785</orcidid><orcidid>https://orcid.org/0000-0002-0328-8295</orcidid><orcidid>https://orcid.org/0000-0002-6367-0939</orcidid><orcidid>https://orcid.org/0000-0002-6493-2750</orcidid><orcidid>https://orcid.org/0000-0002-3761-4212</orcidid><orcidid>https://orcid.org/0000-0002-4984-9705</orcidid><orcidid>https://orcid.org/0000-0002-0978-9154</orcidid><orcidid>https://orcid.org/0000-0002-3117-8616</orcidid><orcidid>https://orcid.org/0000-0002-5931-5918</orcidid></search><sort><creationdate>20231102</creationdate><title>Thermal dynamics of few-layer-graphene seals</title><author>Rørbech Ambjørner, Hjalte ; Bjørnlund, Anton Simon ; Bonczyk, Tobias Georg ; Dollekamp, Edwin ; Kaas, Lau Morten ; Colding-Fagerholt, Sofie ; Mølhave, Kristian Speranza ; Damsgaard, Christian Danvad ; Helveg, Stig ; Vesborg, Peter Christian Kjærgaard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-ba9ac753efd0bf13a49ea26988f50bdde561b44fde00d1f70eb22583cfa4c2143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Basal plane</topic><topic>Electron energy loss spectroscopy</topic><topic>Graphene</topic><topic>Leakage</topic><topic>Permeability</topic><topic>Silicon dioxide</topic><topic>Substrates</topic><topic>Temperature dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rørbech Ambjørner, Hjalte</creatorcontrib><creatorcontrib>Bjørnlund, Anton Simon</creatorcontrib><creatorcontrib>Bonczyk, Tobias Georg</creatorcontrib><creatorcontrib>Dollekamp, Edwin</creatorcontrib><creatorcontrib>Kaas, Lau Morten</creatorcontrib><creatorcontrib>Colding-Fagerholt, Sofie</creatorcontrib><creatorcontrib>Mølhave, Kristian Speranza</creatorcontrib><creatorcontrib>Damsgaard, Christian Danvad</creatorcontrib><creatorcontrib>Helveg, Stig</creatorcontrib><creatorcontrib>Vesborg, Peter Christian Kjærgaard</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rørbech Ambjørner, Hjalte</au><au>Bjørnlund, Anton Simon</au><au>Bonczyk, Tobias Georg</au><au>Dollekamp, Edwin</au><au>Kaas, Lau Morten</au><au>Colding-Fagerholt, Sofie</au><au>Mølhave, Kristian Speranza</au><au>Damsgaard, Christian Danvad</au><au>Helveg, Stig</au><au>Vesborg, Peter Christian Kjærgaard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal dynamics of few-layer-graphene seals</atitle><jtitle>Nanoscale</jtitle><date>2023-11-02</date><risdate>2023</risdate><volume>15</volume><issue>42</issue><spage>16896</spage><epage>1693</epage><pages>16896-1693</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Being of atomic thickness, graphene is the thinnest imaginable membrane. While graphene's basal plane is highly impermeable at the molecular level, the impermeability is, in practice, compromised by leakage pathways located at the graphene-substrate interface. Here, we provide a kinetic analysis of such interface-mediated leakage by probing gas trapped in graphene-sealed SiO
2
cavities
versus
time and temperature using electron energy loss spectroscopy. The results show that gas leakage exhibits an Arrhenius-type temperature dependency with apparent activation energies between 0.2 and 0.7 eV. Surprisingly, the interface leak rate can be improved by several orders of magnitude by thermal processing, which alters the kinetic parameters of the temperature dependency. The present study thus provides fundamental insight into the leakage mechanism while simultaneously demonstrating thermal processing as a generic approach for tightening graphene-based-seals with applications within chemistry and biology.
Direct observation of gas leakage from few-layer-graphene-sealed electron transparent cavities with electron energy loss spectroscopy at elevated temperatures.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3nr03459c</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6896-9315</orcidid><orcidid>https://orcid.org/0000-0001-8956-5785</orcidid><orcidid>https://orcid.org/0000-0002-0328-8295</orcidid><orcidid>https://orcid.org/0000-0002-6367-0939</orcidid><orcidid>https://orcid.org/0000-0002-6493-2750</orcidid><orcidid>https://orcid.org/0000-0002-3761-4212</orcidid><orcidid>https://orcid.org/0000-0002-4984-9705</orcidid><orcidid>https://orcid.org/0000-0002-0978-9154</orcidid><orcidid>https://orcid.org/0000-0002-3117-8616</orcidid><orcidid>https://orcid.org/0000-0002-5931-5918</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2023-11, Vol.15 (42), p.16896-1693 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_rsc_primary_d3nr03459c |
source | Royal Society Of Chemistry Journals |
subjects | Basal plane Electron energy loss spectroscopy Graphene Leakage Permeability Silicon dioxide Substrates Temperature dependence |
title | Thermal dynamics of few-layer-graphene seals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T13%3A23%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20dynamics%20of%20few-layer-graphene%20seals&rft.jtitle=Nanoscale&rft.au=R%C3%B8rbech%20Ambj%C3%B8rner,%20Hjalte&rft.date=2023-11-02&rft.volume=15&rft.issue=42&rft.spage=16896&rft.epage=1693&rft.pages=16896-1693&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d3nr03459c&rft_dat=%3Cproquest_rsc_p%3E2885183965%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2885183965&rft_id=info:pmid/&rfr_iscdi=true |