Heterocycle-derived organosilatranes as naked eye sensors for Sn ions and their potential inhibiting activity against HIV-1 protease a computational approach

Nitrogen-based heterocycles are frequently present in active pharmaceutical products. Inspired by this, we design heterocycle-appended organosilatranes having an azomethine linkage using a simple synthetic approach. All the synthesized organosilatranes were well characterized by elemental analysis;...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New journal of chemistry 2023-07, Vol.47 (27), p.1268-12619
Hauptverfasser: Singh, Gurjaspreet, Diksha, Mohit, Priyanka, Devi, Anita, Devi, Swati, Kaur, Harshbir, Singh, Jandeep, Singh, Gurleen
Format: Artikel
Sprache:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12619
container_issue 27
container_start_page 1268
container_title New journal of chemistry
container_volume 47
creator Singh, Gurjaspreet
Diksha
Mohit
Priyanka
Devi, Anita
Devi, Swati
Kaur, Harshbir
Singh, Jandeep
Singh, Gurleen
description Nitrogen-based heterocycles are frequently present in active pharmaceutical products. Inspired by this, we design heterocycle-appended organosilatranes having an azomethine linkage using a simple synthetic approach. All the synthesized organosilatranes were well characterized by elemental analysis; FTIR, NMR ( 1 H and 13 C) and mass spectrometry. The chemosensor shows high selectivity towards Sn 2+ metal ions and the transparent solution of the ligand turned to yellow colour in the presence of Sn 2+ ions. The ligand binds with metal ions with a high binding affinity ( K a = 3.5 × 10 6 M −1 ). Furthermore, by using fluorometric spectroscopy, the limit of detection was calculated to be 4.5 × 10 −8 M. In addition, to find the binding mode of the ligand and metal, the complex was synthesized and characterized by 1 H NMR spectroscopy and DFT calculations were also performed. Also, the bioavailability of the compounds was confirmed by pharmacological investigations using Molinspiration and PreADMET online servers and the results show that all the synthetic silatranes obey Lipinski's rule and possess acceptable ADMET properties. Moreover, the molecular docking studies provide valuable information regarding the interaction of compound 4a with the HIV-1 protease protein with a binding energy of −7.00 kcal mol −1 . Nitrogen-based heterocycles are frequently present in active pharmaceutical products.
doi_str_mv 10.1039/d3nj01484c
format Article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_d3nj01484c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d3nj01484c</sourcerecordid><originalsourceid>FETCH-rsc_primary_d3nj01484c3</originalsourceid><addsrcrecordid>eNqFj81KxEAQhAdRcP25eBf6BaIzZozmLEo8r3hd2klv0mu2J0yPC3kY39U5CB49VcFXVVDGXDl742zd3va17Kzzjz4cmZWrm7Zq7xp3XLzzvrL3vjk1Z6o7a517aNzKfHeUKcWwhImqnhIfqIeYBpSoPGFOKKSACoKfhdBCoCQak8I2JlgLcJQSkB7ySJxgjpkkM07AMvIHZ5YBMGQ-cF4AB2TRDN3re-VgTiWMSoAQ4n7-ypjLWqniXBCG8cKcbHFSuvzVc3P98vz21FVJw2ZOvMe0bP4-1__xH14gXlo</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Heterocycle-derived organosilatranes as naked eye sensors for Sn ions and their potential inhibiting activity against HIV-1 protease a computational approach</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Singh, Gurjaspreet ; Diksha ; Mohit ; Priyanka ; Devi, Anita ; Devi, Swati ; Kaur, Harshbir ; Singh, Jandeep ; Singh, Gurleen</creator><creatorcontrib>Singh, Gurjaspreet ; Diksha ; Mohit ; Priyanka ; Devi, Anita ; Devi, Swati ; Kaur, Harshbir ; Singh, Jandeep ; Singh, Gurleen</creatorcontrib><description>Nitrogen-based heterocycles are frequently present in active pharmaceutical products. Inspired by this, we design heterocycle-appended organosilatranes having an azomethine linkage using a simple synthetic approach. All the synthesized organosilatranes were well characterized by elemental analysis; FTIR, NMR ( 1 H and 13 C) and mass spectrometry. The chemosensor shows high selectivity towards Sn 2+ metal ions and the transparent solution of the ligand turned to yellow colour in the presence of Sn 2+ ions. The ligand binds with metal ions with a high binding affinity ( K a = 3.5 × 10 6 M −1 ). Furthermore, by using fluorometric spectroscopy, the limit of detection was calculated to be 4.5 × 10 −8 M. In addition, to find the binding mode of the ligand and metal, the complex was synthesized and characterized by 1 H NMR spectroscopy and DFT calculations were also performed. Also, the bioavailability of the compounds was confirmed by pharmacological investigations using Molinspiration and PreADMET online servers and the results show that all the synthetic silatranes obey Lipinski's rule and possess acceptable ADMET properties. Moreover, the molecular docking studies provide valuable information regarding the interaction of compound 4a with the HIV-1 protease protein with a binding energy of −7.00 kcal mol −1 . Nitrogen-based heterocycles are frequently present in active pharmaceutical products.</description><identifier>ISSN: 1144-0546</identifier><identifier>EISSN: 1369-9261</identifier><identifier>DOI: 10.1039/d3nj01484c</identifier><ispartof>New journal of chemistry, 2023-07, Vol.47 (27), p.1268-12619</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Singh, Gurjaspreet</creatorcontrib><creatorcontrib>Diksha</creatorcontrib><creatorcontrib>Mohit</creatorcontrib><creatorcontrib>Priyanka</creatorcontrib><creatorcontrib>Devi, Anita</creatorcontrib><creatorcontrib>Devi, Swati</creatorcontrib><creatorcontrib>Kaur, Harshbir</creatorcontrib><creatorcontrib>Singh, Jandeep</creatorcontrib><creatorcontrib>Singh, Gurleen</creatorcontrib><title>Heterocycle-derived organosilatranes as naked eye sensors for Sn ions and their potential inhibiting activity against HIV-1 protease a computational approach</title><title>New journal of chemistry</title><description>Nitrogen-based heterocycles are frequently present in active pharmaceutical products. Inspired by this, we design heterocycle-appended organosilatranes having an azomethine linkage using a simple synthetic approach. All the synthesized organosilatranes were well characterized by elemental analysis; FTIR, NMR ( 1 H and 13 C) and mass spectrometry. The chemosensor shows high selectivity towards Sn 2+ metal ions and the transparent solution of the ligand turned to yellow colour in the presence of Sn 2+ ions. The ligand binds with metal ions with a high binding affinity ( K a = 3.5 × 10 6 M −1 ). Furthermore, by using fluorometric spectroscopy, the limit of detection was calculated to be 4.5 × 10 −8 M. In addition, to find the binding mode of the ligand and metal, the complex was synthesized and characterized by 1 H NMR spectroscopy and DFT calculations were also performed. Also, the bioavailability of the compounds was confirmed by pharmacological investigations using Molinspiration and PreADMET online servers and the results show that all the synthetic silatranes obey Lipinski's rule and possess acceptable ADMET properties. Moreover, the molecular docking studies provide valuable information regarding the interaction of compound 4a with the HIV-1 protease protein with a binding energy of −7.00 kcal mol −1 . Nitrogen-based heterocycles are frequently present in active pharmaceutical products.</description><issn>1144-0546</issn><issn>1369-9261</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFj81KxEAQhAdRcP25eBf6BaIzZozmLEo8r3hd2klv0mu2J0yPC3kY39U5CB49VcFXVVDGXDl742zd3va17Kzzjz4cmZWrm7Zq7xp3XLzzvrL3vjk1Z6o7a517aNzKfHeUKcWwhImqnhIfqIeYBpSoPGFOKKSACoKfhdBCoCQak8I2JlgLcJQSkB7ySJxgjpkkM07AMvIHZ5YBMGQ-cF4AB2TRDN3re-VgTiWMSoAQ4n7-ypjLWqniXBCG8cKcbHFSuvzVc3P98vz21FVJw2ZOvMe0bP4-1__xH14gXlo</recordid><startdate>20230710</startdate><enddate>20230710</enddate><creator>Singh, Gurjaspreet</creator><creator>Diksha</creator><creator>Mohit</creator><creator>Priyanka</creator><creator>Devi, Anita</creator><creator>Devi, Swati</creator><creator>Kaur, Harshbir</creator><creator>Singh, Jandeep</creator><creator>Singh, Gurleen</creator><scope/></search><sort><creationdate>20230710</creationdate><title>Heterocycle-derived organosilatranes as naked eye sensors for Sn ions and their potential inhibiting activity against HIV-1 protease a computational approach</title><author>Singh, Gurjaspreet ; Diksha ; Mohit ; Priyanka ; Devi, Anita ; Devi, Swati ; Kaur, Harshbir ; Singh, Jandeep ; Singh, Gurleen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_d3nj01484c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Gurjaspreet</creatorcontrib><creatorcontrib>Diksha</creatorcontrib><creatorcontrib>Mohit</creatorcontrib><creatorcontrib>Priyanka</creatorcontrib><creatorcontrib>Devi, Anita</creatorcontrib><creatorcontrib>Devi, Swati</creatorcontrib><creatorcontrib>Kaur, Harshbir</creatorcontrib><creatorcontrib>Singh, Jandeep</creatorcontrib><creatorcontrib>Singh, Gurleen</creatorcontrib><jtitle>New journal of chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Gurjaspreet</au><au>Diksha</au><au>Mohit</au><au>Priyanka</au><au>Devi, Anita</au><au>Devi, Swati</au><au>Kaur, Harshbir</au><au>Singh, Jandeep</au><au>Singh, Gurleen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterocycle-derived organosilatranes as naked eye sensors for Sn ions and their potential inhibiting activity against HIV-1 protease a computational approach</atitle><jtitle>New journal of chemistry</jtitle><date>2023-07-10</date><risdate>2023</risdate><volume>47</volume><issue>27</issue><spage>1268</spage><epage>12619</epage><pages>1268-12619</pages><issn>1144-0546</issn><eissn>1369-9261</eissn><abstract>Nitrogen-based heterocycles are frequently present in active pharmaceutical products. Inspired by this, we design heterocycle-appended organosilatranes having an azomethine linkage using a simple synthetic approach. All the synthesized organosilatranes were well characterized by elemental analysis; FTIR, NMR ( 1 H and 13 C) and mass spectrometry. The chemosensor shows high selectivity towards Sn 2+ metal ions and the transparent solution of the ligand turned to yellow colour in the presence of Sn 2+ ions. The ligand binds with metal ions with a high binding affinity ( K a = 3.5 × 10 6 M −1 ). Furthermore, by using fluorometric spectroscopy, the limit of detection was calculated to be 4.5 × 10 −8 M. In addition, to find the binding mode of the ligand and metal, the complex was synthesized and characterized by 1 H NMR spectroscopy and DFT calculations were also performed. Also, the bioavailability of the compounds was confirmed by pharmacological investigations using Molinspiration and PreADMET online servers and the results show that all the synthetic silatranes obey Lipinski's rule and possess acceptable ADMET properties. Moreover, the molecular docking studies provide valuable information regarding the interaction of compound 4a with the HIV-1 protease protein with a binding energy of −7.00 kcal mol −1 . Nitrogen-based heterocycles are frequently present in active pharmaceutical products.</abstract><doi>10.1039/d3nj01484c</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1144-0546
ispartof New journal of chemistry, 2023-07, Vol.47 (27), p.1268-12619
issn 1144-0546
1369-9261
language
recordid cdi_rsc_primary_d3nj01484c
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
title Heterocycle-derived organosilatranes as naked eye sensors for Sn ions and their potential inhibiting activity against HIV-1 protease a computational approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T16%3A24%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterocycle-derived%20organosilatranes%20as%20naked%20eye%20sensors%20for%20Sn%20ions%20and%20their%20potential%20inhibiting%20activity%20against%20HIV-1%20protease%20a%20computational%20approach&rft.jtitle=New%20journal%20of%20chemistry&rft.au=Singh,%20Gurjaspreet&rft.date=2023-07-10&rft.volume=47&rft.issue=27&rft.spage=1268&rft.epage=12619&rft.pages=1268-12619&rft.issn=1144-0546&rft.eissn=1369-9261&rft_id=info:doi/10.1039/d3nj01484c&rft_dat=%3Crsc%3Ed3nj01484c%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true