Heterostructured grafting of NiFe-layered double hydroxide@TiO for boosting photoelectrochemical cathodic protection

Accelerating the oxidation process at photoanode-electrolyte interfaces can prolong the lifetime of photoexcited electrons and improve the efficiency of photoelectrochemical cathodic protection (PECCP) systems without relying on hole scavengers. However, the systematic design of precisely structured...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials horizons 2024-04, Vol.11 (7), p.188-1816
Hauptverfasser: Wang, Zhi-Jun, Xie, Hui, Jun, Seong Chan, Li, Jiang, Wei, Li Cheng, Fang, Yu Chen, Liu, Shude, Ma, Ming, Xing, Zheng
Format: Artikel
Sprache:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1816
container_issue 7
container_start_page 188
container_title Materials horizons
container_volume 11
creator Wang, Zhi-Jun
Xie, Hui
Jun, Seong Chan
Li, Jiang
Wei, Li Cheng
Fang, Yu Chen
Liu, Shude
Ma, Ming
Xing, Zheng
description Accelerating the oxidation process at photoanode-electrolyte interfaces can prolong the lifetime of photoexcited electrons and improve the efficiency of photoelectrochemical cathodic protection (PECCP) systems without relying on hole scavengers. However, the systematic design of precisely structured heterostructures for efficient photoanodes remains challenging. Here we meticulously engineered a type-II heterostructure featuring precise spatial organization, wherein NiFe-layered double hydroxide nanosheets (NiFe-LDH NSs) were assembled onto annealed TiO 2 nanorod arrays (ATNAs), demonstrating their effectiveness in achieving efficient PECCP. The interfacial electronic coupling and appropriate energy alignment between the NiFe-LDH NSs and ATNAs allowed rapid hole extraction from the ATNAs to the NiFe-LDH NSs. Furthermore, the uniform distribution of the NiFe-LDH NSs on top of ATNAs drastically reduced the overpotential of oxygen evolution reactions (OER) from 370 to 200 mV and Tafel slope from 162 to 56 mV dec −1 , leading to significantly improved cathodic protection of 304 stainless steel (SS) under extended illumination and interesting post-illumination protection. In addition, with the increase of testing cycles, the as-prepared NiFe-LDH NSs@ATNAs demonstrated a progressively enhanced cathodic protection potential from 0.15 to 0.13 V vs. RHE over 50 cycles. These findings provide important guidelines for the design of future high-efficiency green metal protection through rational photoanode design. Grafting NiFe-LDH nanosheets onto TiO 2 nanorod arrays largely improves the photoexcited charge separation and accelerates the surface oxidation reaction, leading to stable & self-enhancing photoelectrochemical cathodic protection performance.
doi_str_mv 10.1039/d3mh02134c
format Article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_d3mh02134c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d3mh02134c</sourcerecordid><originalsourceid>FETCH-rsc_primary_d3mh02134c3</originalsourceid><addsrcrecordid>eNqFj0FrAjEQhUNRqKgX70L-wLazxtX2VigVT_XiXWIyayJZZ5nMQvffd4XSHnt6D773HZ5SixKeSjCvz940AValWbsHNVlBVRYbU1Wj377ePqp5zlcAGEYVvMBEyR4FmbJw56Rj9PrCtpZ4u2iq9WfcYZFsj3fgqTsn1KH3TF_R49sxHnRNrM80-HejDSSECZ0wuYBNdDZpZyWQj063TDKgSLeZGtc2ZZz_5FQtdx_H933B2Z1ajo3l_vT3xvzHvwFPWVBZ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Heterostructured grafting of NiFe-layered double hydroxide@TiO for boosting photoelectrochemical cathodic protection</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Wang, Zhi-Jun ; Xie, Hui ; Jun, Seong Chan ; Li, Jiang ; Wei, Li Cheng ; Fang, Yu Chen ; Liu, Shude ; Ma, Ming ; Xing, Zheng</creator><creatorcontrib>Wang, Zhi-Jun ; Xie, Hui ; Jun, Seong Chan ; Li, Jiang ; Wei, Li Cheng ; Fang, Yu Chen ; Liu, Shude ; Ma, Ming ; Xing, Zheng</creatorcontrib><description>Accelerating the oxidation process at photoanode-electrolyte interfaces can prolong the lifetime of photoexcited electrons and improve the efficiency of photoelectrochemical cathodic protection (PECCP) systems without relying on hole scavengers. However, the systematic design of precisely structured heterostructures for efficient photoanodes remains challenging. Here we meticulously engineered a type-II heterostructure featuring precise spatial organization, wherein NiFe-layered double hydroxide nanosheets (NiFe-LDH NSs) were assembled onto annealed TiO 2 nanorod arrays (ATNAs), demonstrating their effectiveness in achieving efficient PECCP. The interfacial electronic coupling and appropriate energy alignment between the NiFe-LDH NSs and ATNAs allowed rapid hole extraction from the ATNAs to the NiFe-LDH NSs. Furthermore, the uniform distribution of the NiFe-LDH NSs on top of ATNAs drastically reduced the overpotential of oxygen evolution reactions (OER) from 370 to 200 mV and Tafel slope from 162 to 56 mV dec −1 , leading to significantly improved cathodic protection of 304 stainless steel (SS) under extended illumination and interesting post-illumination protection. In addition, with the increase of testing cycles, the as-prepared NiFe-LDH NSs@ATNAs demonstrated a progressively enhanced cathodic protection potential from 0.15 to 0.13 V vs. RHE over 50 cycles. These findings provide important guidelines for the design of future high-efficiency green metal protection through rational photoanode design. Grafting NiFe-LDH nanosheets onto TiO 2 nanorod arrays largely improves the photoexcited charge separation and accelerates the surface oxidation reaction, leading to stable &amp; self-enhancing photoelectrochemical cathodic protection performance.</description><identifier>ISSN: 2051-6347</identifier><identifier>EISSN: 2051-6355</identifier><identifier>DOI: 10.1039/d3mh02134c</identifier><ispartof>Materials horizons, 2024-04, Vol.11 (7), p.188-1816</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Wang, Zhi-Jun</creatorcontrib><creatorcontrib>Xie, Hui</creatorcontrib><creatorcontrib>Jun, Seong Chan</creatorcontrib><creatorcontrib>Li, Jiang</creatorcontrib><creatorcontrib>Wei, Li Cheng</creatorcontrib><creatorcontrib>Fang, Yu Chen</creatorcontrib><creatorcontrib>Liu, Shude</creatorcontrib><creatorcontrib>Ma, Ming</creatorcontrib><creatorcontrib>Xing, Zheng</creatorcontrib><title>Heterostructured grafting of NiFe-layered double hydroxide@TiO for boosting photoelectrochemical cathodic protection</title><title>Materials horizons</title><description>Accelerating the oxidation process at photoanode-electrolyte interfaces can prolong the lifetime of photoexcited electrons and improve the efficiency of photoelectrochemical cathodic protection (PECCP) systems without relying on hole scavengers. However, the systematic design of precisely structured heterostructures for efficient photoanodes remains challenging. Here we meticulously engineered a type-II heterostructure featuring precise spatial organization, wherein NiFe-layered double hydroxide nanosheets (NiFe-LDH NSs) were assembled onto annealed TiO 2 nanorod arrays (ATNAs), demonstrating their effectiveness in achieving efficient PECCP. The interfacial electronic coupling and appropriate energy alignment between the NiFe-LDH NSs and ATNAs allowed rapid hole extraction from the ATNAs to the NiFe-LDH NSs. Furthermore, the uniform distribution of the NiFe-LDH NSs on top of ATNAs drastically reduced the overpotential of oxygen evolution reactions (OER) from 370 to 200 mV and Tafel slope from 162 to 56 mV dec −1 , leading to significantly improved cathodic protection of 304 stainless steel (SS) under extended illumination and interesting post-illumination protection. In addition, with the increase of testing cycles, the as-prepared NiFe-LDH NSs@ATNAs demonstrated a progressively enhanced cathodic protection potential from 0.15 to 0.13 V vs. RHE over 50 cycles. These findings provide important guidelines for the design of future high-efficiency green metal protection through rational photoanode design. Grafting NiFe-LDH nanosheets onto TiO 2 nanorod arrays largely improves the photoexcited charge separation and accelerates the surface oxidation reaction, leading to stable &amp; self-enhancing photoelectrochemical cathodic protection performance.</description><issn>2051-6347</issn><issn>2051-6355</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFj0FrAjEQhUNRqKgX70L-wLazxtX2VigVT_XiXWIyayJZZ5nMQvffd4XSHnt6D773HZ5SixKeSjCvz940AValWbsHNVlBVRYbU1Wj377ePqp5zlcAGEYVvMBEyR4FmbJw56Rj9PrCtpZ4u2iq9WfcYZFsj3fgqTsn1KH3TF_R49sxHnRNrM80-HejDSSECZ0wuYBNdDZpZyWQj063TDKgSLeZGtc2ZZz_5FQtdx_H933B2Z1ajo3l_vT3xvzHvwFPWVBZ</recordid><startdate>20240402</startdate><enddate>20240402</enddate><creator>Wang, Zhi-Jun</creator><creator>Xie, Hui</creator><creator>Jun, Seong Chan</creator><creator>Li, Jiang</creator><creator>Wei, Li Cheng</creator><creator>Fang, Yu Chen</creator><creator>Liu, Shude</creator><creator>Ma, Ming</creator><creator>Xing, Zheng</creator><scope/></search><sort><creationdate>20240402</creationdate><title>Heterostructured grafting of NiFe-layered double hydroxide@TiO for boosting photoelectrochemical cathodic protection</title><author>Wang, Zhi-Jun ; Xie, Hui ; Jun, Seong Chan ; Li, Jiang ; Wei, Li Cheng ; Fang, Yu Chen ; Liu, Shude ; Ma, Ming ; Xing, Zheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_d3mh02134c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhi-Jun</creatorcontrib><creatorcontrib>Xie, Hui</creatorcontrib><creatorcontrib>Jun, Seong Chan</creatorcontrib><creatorcontrib>Li, Jiang</creatorcontrib><creatorcontrib>Wei, Li Cheng</creatorcontrib><creatorcontrib>Fang, Yu Chen</creatorcontrib><creatorcontrib>Liu, Shude</creatorcontrib><creatorcontrib>Ma, Ming</creatorcontrib><creatorcontrib>Xing, Zheng</creatorcontrib><jtitle>Materials horizons</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhi-Jun</au><au>Xie, Hui</au><au>Jun, Seong Chan</au><au>Li, Jiang</au><au>Wei, Li Cheng</au><au>Fang, Yu Chen</au><au>Liu, Shude</au><au>Ma, Ming</au><au>Xing, Zheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterostructured grafting of NiFe-layered double hydroxide@TiO for boosting photoelectrochemical cathodic protection</atitle><jtitle>Materials horizons</jtitle><date>2024-04-02</date><risdate>2024</risdate><volume>11</volume><issue>7</issue><spage>188</spage><epage>1816</epage><pages>188-1816</pages><issn>2051-6347</issn><eissn>2051-6355</eissn><abstract>Accelerating the oxidation process at photoanode-electrolyte interfaces can prolong the lifetime of photoexcited electrons and improve the efficiency of photoelectrochemical cathodic protection (PECCP) systems without relying on hole scavengers. However, the systematic design of precisely structured heterostructures for efficient photoanodes remains challenging. Here we meticulously engineered a type-II heterostructure featuring precise spatial organization, wherein NiFe-layered double hydroxide nanosheets (NiFe-LDH NSs) were assembled onto annealed TiO 2 nanorod arrays (ATNAs), demonstrating their effectiveness in achieving efficient PECCP. The interfacial electronic coupling and appropriate energy alignment between the NiFe-LDH NSs and ATNAs allowed rapid hole extraction from the ATNAs to the NiFe-LDH NSs. Furthermore, the uniform distribution of the NiFe-LDH NSs on top of ATNAs drastically reduced the overpotential of oxygen evolution reactions (OER) from 370 to 200 mV and Tafel slope from 162 to 56 mV dec −1 , leading to significantly improved cathodic protection of 304 stainless steel (SS) under extended illumination and interesting post-illumination protection. In addition, with the increase of testing cycles, the as-prepared NiFe-LDH NSs@ATNAs demonstrated a progressively enhanced cathodic protection potential from 0.15 to 0.13 V vs. RHE over 50 cycles. These findings provide important guidelines for the design of future high-efficiency green metal protection through rational photoanode design. Grafting NiFe-LDH nanosheets onto TiO 2 nanorod arrays largely improves the photoexcited charge separation and accelerates the surface oxidation reaction, leading to stable &amp; self-enhancing photoelectrochemical cathodic protection performance.</abstract><doi>10.1039/d3mh02134c</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2051-6347
ispartof Materials horizons, 2024-04, Vol.11 (7), p.188-1816
issn 2051-6347
2051-6355
language
recordid cdi_rsc_primary_d3mh02134c
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
title Heterostructured grafting of NiFe-layered double hydroxide@TiO for boosting photoelectrochemical cathodic protection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T23%3A51%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterostructured%20grafting%20of%20NiFe-layered%20double%20hydroxide@TiO%20for%20boosting%20photoelectrochemical%20cathodic%20protection&rft.jtitle=Materials%20horizons&rft.au=Wang,%20Zhi-Jun&rft.date=2024-04-02&rft.volume=11&rft.issue=7&rft.spage=188&rft.epage=1816&rft.pages=188-1816&rft.issn=2051-6347&rft.eissn=2051-6355&rft_id=info:doi/10.1039/d3mh02134c&rft_dat=%3Crsc%3Ed3mh02134c%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true