Heterostructured grafting of NiFe-layered double hydroxide@TiO for boosting photoelectrochemical cathodic protection
Accelerating the oxidation process at photoanode-electrolyte interfaces can prolong the lifetime of photoexcited electrons and improve the efficiency of photoelectrochemical cathodic protection (PECCP) systems without relying on hole scavengers. However, the systematic design of precisely structured...
Gespeichert in:
Veröffentlicht in: | Materials horizons 2024-04, Vol.11 (7), p.188-1816 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1816 |
---|---|
container_issue | 7 |
container_start_page | 188 |
container_title | Materials horizons |
container_volume | 11 |
creator | Wang, Zhi-Jun Xie, Hui Jun, Seong Chan Li, Jiang Wei, Li Cheng Fang, Yu Chen Liu, Shude Ma, Ming Xing, Zheng |
description | Accelerating the oxidation process at photoanode-electrolyte interfaces can prolong the lifetime of photoexcited electrons and improve the efficiency of photoelectrochemical cathodic protection (PECCP) systems without relying on hole scavengers. However, the systematic design of precisely structured heterostructures for efficient photoanodes remains challenging. Here we meticulously engineered a type-II heterostructure featuring precise spatial organization, wherein NiFe-layered double hydroxide nanosheets (NiFe-LDH NSs) were assembled onto annealed TiO
2
nanorod arrays (ATNAs), demonstrating their effectiveness in achieving efficient PECCP. The interfacial electronic coupling and appropriate energy alignment between the NiFe-LDH NSs and ATNAs allowed rapid hole extraction from the ATNAs to the NiFe-LDH NSs. Furthermore, the uniform distribution of the NiFe-LDH NSs on top of ATNAs drastically reduced the overpotential of oxygen evolution reactions (OER) from 370 to 200 mV and Tafel slope from 162 to 56 mV dec
−1
, leading to significantly improved cathodic protection of 304 stainless steel (SS) under extended illumination and interesting post-illumination protection. In addition, with the increase of testing cycles, the as-prepared NiFe-LDH NSs@ATNAs demonstrated a progressively enhanced cathodic protection potential from 0.15 to 0.13 V
vs.
RHE over 50 cycles. These findings provide important guidelines for the design of future high-efficiency green metal protection through rational photoanode design.
Grafting NiFe-LDH nanosheets onto TiO
2
nanorod arrays largely improves the photoexcited charge separation and accelerates the surface oxidation reaction, leading to stable & self-enhancing photoelectrochemical cathodic protection performance. |
doi_str_mv | 10.1039/d3mh02134c |
format | Article |
fullrecord | <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_d3mh02134c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d3mh02134c</sourcerecordid><originalsourceid>FETCH-rsc_primary_d3mh02134c3</originalsourceid><addsrcrecordid>eNqFj0FrAjEQhUNRqKgX70L-wLazxtX2VigVT_XiXWIyayJZZ5nMQvffd4XSHnt6D773HZ5SixKeSjCvz940AValWbsHNVlBVRYbU1Wj377ePqp5zlcAGEYVvMBEyR4FmbJw56Rj9PrCtpZ4u2iq9WfcYZFsj3fgqTsn1KH3TF_R49sxHnRNrM80-HejDSSECZ0wuYBNdDZpZyWQj063TDKgSLeZGtc2ZZz_5FQtdx_H933B2Z1ajo3l_vT3xvzHvwFPWVBZ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Heterostructured grafting of NiFe-layered double hydroxide@TiO for boosting photoelectrochemical cathodic protection</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Wang, Zhi-Jun ; Xie, Hui ; Jun, Seong Chan ; Li, Jiang ; Wei, Li Cheng ; Fang, Yu Chen ; Liu, Shude ; Ma, Ming ; Xing, Zheng</creator><creatorcontrib>Wang, Zhi-Jun ; Xie, Hui ; Jun, Seong Chan ; Li, Jiang ; Wei, Li Cheng ; Fang, Yu Chen ; Liu, Shude ; Ma, Ming ; Xing, Zheng</creatorcontrib><description>Accelerating the oxidation process at photoanode-electrolyte interfaces can prolong the lifetime of photoexcited electrons and improve the efficiency of photoelectrochemical cathodic protection (PECCP) systems without relying on hole scavengers. However, the systematic design of precisely structured heterostructures for efficient photoanodes remains challenging. Here we meticulously engineered a type-II heterostructure featuring precise spatial organization, wherein NiFe-layered double hydroxide nanosheets (NiFe-LDH NSs) were assembled onto annealed TiO
2
nanorod arrays (ATNAs), demonstrating their effectiveness in achieving efficient PECCP. The interfacial electronic coupling and appropriate energy alignment between the NiFe-LDH NSs and ATNAs allowed rapid hole extraction from the ATNAs to the NiFe-LDH NSs. Furthermore, the uniform distribution of the NiFe-LDH NSs on top of ATNAs drastically reduced the overpotential of oxygen evolution reactions (OER) from 370 to 200 mV and Tafel slope from 162 to 56 mV dec
−1
, leading to significantly improved cathodic protection of 304 stainless steel (SS) under extended illumination and interesting post-illumination protection. In addition, with the increase of testing cycles, the as-prepared NiFe-LDH NSs@ATNAs demonstrated a progressively enhanced cathodic protection potential from 0.15 to 0.13 V
vs.
RHE over 50 cycles. These findings provide important guidelines for the design of future high-efficiency green metal protection through rational photoanode design.
Grafting NiFe-LDH nanosheets onto TiO
2
nanorod arrays largely improves the photoexcited charge separation and accelerates the surface oxidation reaction, leading to stable & self-enhancing photoelectrochemical cathodic protection performance.</description><identifier>ISSN: 2051-6347</identifier><identifier>EISSN: 2051-6355</identifier><identifier>DOI: 10.1039/d3mh02134c</identifier><ispartof>Materials horizons, 2024-04, Vol.11 (7), p.188-1816</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Wang, Zhi-Jun</creatorcontrib><creatorcontrib>Xie, Hui</creatorcontrib><creatorcontrib>Jun, Seong Chan</creatorcontrib><creatorcontrib>Li, Jiang</creatorcontrib><creatorcontrib>Wei, Li Cheng</creatorcontrib><creatorcontrib>Fang, Yu Chen</creatorcontrib><creatorcontrib>Liu, Shude</creatorcontrib><creatorcontrib>Ma, Ming</creatorcontrib><creatorcontrib>Xing, Zheng</creatorcontrib><title>Heterostructured grafting of NiFe-layered double hydroxide@TiO for boosting photoelectrochemical cathodic protection</title><title>Materials horizons</title><description>Accelerating the oxidation process at photoanode-electrolyte interfaces can prolong the lifetime of photoexcited electrons and improve the efficiency of photoelectrochemical cathodic protection (PECCP) systems without relying on hole scavengers. However, the systematic design of precisely structured heterostructures for efficient photoanodes remains challenging. Here we meticulously engineered a type-II heterostructure featuring precise spatial organization, wherein NiFe-layered double hydroxide nanosheets (NiFe-LDH NSs) were assembled onto annealed TiO
2
nanorod arrays (ATNAs), demonstrating their effectiveness in achieving efficient PECCP. The interfacial electronic coupling and appropriate energy alignment between the NiFe-LDH NSs and ATNAs allowed rapid hole extraction from the ATNAs to the NiFe-LDH NSs. Furthermore, the uniform distribution of the NiFe-LDH NSs on top of ATNAs drastically reduced the overpotential of oxygen evolution reactions (OER) from 370 to 200 mV and Tafel slope from 162 to 56 mV dec
−1
, leading to significantly improved cathodic protection of 304 stainless steel (SS) under extended illumination and interesting post-illumination protection. In addition, with the increase of testing cycles, the as-prepared NiFe-LDH NSs@ATNAs demonstrated a progressively enhanced cathodic protection potential from 0.15 to 0.13 V
vs.
RHE over 50 cycles. These findings provide important guidelines for the design of future high-efficiency green metal protection through rational photoanode design.
Grafting NiFe-LDH nanosheets onto TiO
2
nanorod arrays largely improves the photoexcited charge separation and accelerates the surface oxidation reaction, leading to stable & self-enhancing photoelectrochemical cathodic protection performance.</description><issn>2051-6347</issn><issn>2051-6355</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFj0FrAjEQhUNRqKgX70L-wLazxtX2VigVT_XiXWIyayJZZ5nMQvffd4XSHnt6D773HZ5SixKeSjCvz940AValWbsHNVlBVRYbU1Wj377ePqp5zlcAGEYVvMBEyR4FmbJw56Rj9PrCtpZ4u2iq9WfcYZFsj3fgqTsn1KH3TF_R49sxHnRNrM80-HejDSSECZ0wuYBNdDZpZyWQj063TDKgSLeZGtc2ZZz_5FQtdx_H933B2Z1ajo3l_vT3xvzHvwFPWVBZ</recordid><startdate>20240402</startdate><enddate>20240402</enddate><creator>Wang, Zhi-Jun</creator><creator>Xie, Hui</creator><creator>Jun, Seong Chan</creator><creator>Li, Jiang</creator><creator>Wei, Li Cheng</creator><creator>Fang, Yu Chen</creator><creator>Liu, Shude</creator><creator>Ma, Ming</creator><creator>Xing, Zheng</creator><scope/></search><sort><creationdate>20240402</creationdate><title>Heterostructured grafting of NiFe-layered double hydroxide@TiO for boosting photoelectrochemical cathodic protection</title><author>Wang, Zhi-Jun ; Xie, Hui ; Jun, Seong Chan ; Li, Jiang ; Wei, Li Cheng ; Fang, Yu Chen ; Liu, Shude ; Ma, Ming ; Xing, Zheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_d3mh02134c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhi-Jun</creatorcontrib><creatorcontrib>Xie, Hui</creatorcontrib><creatorcontrib>Jun, Seong Chan</creatorcontrib><creatorcontrib>Li, Jiang</creatorcontrib><creatorcontrib>Wei, Li Cheng</creatorcontrib><creatorcontrib>Fang, Yu Chen</creatorcontrib><creatorcontrib>Liu, Shude</creatorcontrib><creatorcontrib>Ma, Ming</creatorcontrib><creatorcontrib>Xing, Zheng</creatorcontrib><jtitle>Materials horizons</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhi-Jun</au><au>Xie, Hui</au><au>Jun, Seong Chan</au><au>Li, Jiang</au><au>Wei, Li Cheng</au><au>Fang, Yu Chen</au><au>Liu, Shude</au><au>Ma, Ming</au><au>Xing, Zheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterostructured grafting of NiFe-layered double hydroxide@TiO for boosting photoelectrochemical cathodic protection</atitle><jtitle>Materials horizons</jtitle><date>2024-04-02</date><risdate>2024</risdate><volume>11</volume><issue>7</issue><spage>188</spage><epage>1816</epage><pages>188-1816</pages><issn>2051-6347</issn><eissn>2051-6355</eissn><abstract>Accelerating the oxidation process at photoanode-electrolyte interfaces can prolong the lifetime of photoexcited electrons and improve the efficiency of photoelectrochemical cathodic protection (PECCP) systems without relying on hole scavengers. However, the systematic design of precisely structured heterostructures for efficient photoanodes remains challenging. Here we meticulously engineered a type-II heterostructure featuring precise spatial organization, wherein NiFe-layered double hydroxide nanosheets (NiFe-LDH NSs) were assembled onto annealed TiO
2
nanorod arrays (ATNAs), demonstrating their effectiveness in achieving efficient PECCP. The interfacial electronic coupling and appropriate energy alignment between the NiFe-LDH NSs and ATNAs allowed rapid hole extraction from the ATNAs to the NiFe-LDH NSs. Furthermore, the uniform distribution of the NiFe-LDH NSs on top of ATNAs drastically reduced the overpotential of oxygen evolution reactions (OER) from 370 to 200 mV and Tafel slope from 162 to 56 mV dec
−1
, leading to significantly improved cathodic protection of 304 stainless steel (SS) under extended illumination and interesting post-illumination protection. In addition, with the increase of testing cycles, the as-prepared NiFe-LDH NSs@ATNAs demonstrated a progressively enhanced cathodic protection potential from 0.15 to 0.13 V
vs.
RHE over 50 cycles. These findings provide important guidelines for the design of future high-efficiency green metal protection through rational photoanode design.
Grafting NiFe-LDH nanosheets onto TiO
2
nanorod arrays largely improves the photoexcited charge separation and accelerates the surface oxidation reaction, leading to stable & self-enhancing photoelectrochemical cathodic protection performance.</abstract><doi>10.1039/d3mh02134c</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2051-6347 |
ispartof | Materials horizons, 2024-04, Vol.11 (7), p.188-1816 |
issn | 2051-6347 2051-6355 |
language | |
recordid | cdi_rsc_primary_d3mh02134c |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
title | Heterostructured grafting of NiFe-layered double hydroxide@TiO for boosting photoelectrochemical cathodic protection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T23%3A51%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterostructured%20grafting%20of%20NiFe-layered%20double%20hydroxide@TiO%20for%20boosting%20photoelectrochemical%20cathodic%20protection&rft.jtitle=Materials%20horizons&rft.au=Wang,%20Zhi-Jun&rft.date=2024-04-02&rft.volume=11&rft.issue=7&rft.spage=188&rft.epage=1816&rft.pages=188-1816&rft.issn=2051-6347&rft.eissn=2051-6355&rft_id=info:doi/10.1039/d3mh02134c&rft_dat=%3Crsc%3Ed3mh02134c%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |