Microfluidic device with reconfigurable spatial temporal gradients reveals plastic astrocyte response to stroke and reperfusion

As a leading cause of mortality and morbidity, stroke constitutes a significant global health burden. Ischemic stroke accounts for 80% of cases and occurs due to an arterial thrombus, which impedes cerebral blood flow and rapidly leads to cell death. As the most abundant cell type within the central...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lab on a chip 2023-09, Vol.23 (18), p.3945-396
Hauptverfasser: Reed-McBain, Catherine A, Turaga, Rithvik V, Zima, Seth R. T, Abizanda Campo, Sara, Riendeau, Jeremiah, Contreras Guzman, Emmanuel, Juang, Terry D, Juang, Duane S, Hampton, David W, Skala, Melissa C, Ayuso, Jose M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 396
container_issue 18
container_start_page 3945
container_title Lab on a chip
container_volume 23
creator Reed-McBain, Catherine A
Turaga, Rithvik V
Zima, Seth R. T
Abizanda Campo, Sara
Riendeau, Jeremiah
Contreras Guzman, Emmanuel
Juang, Terry D
Juang, Duane S
Hampton, David W
Skala, Melissa C
Ayuso, Jose M
description As a leading cause of mortality and morbidity, stroke constitutes a significant global health burden. Ischemic stroke accounts for 80% of cases and occurs due to an arterial thrombus, which impedes cerebral blood flow and rapidly leads to cell death. As the most abundant cell type within the central nervous system, astrocytes play a critical role within the injured brain. We developed a novel microphysiological platform that permits the induction of spatiotemporally controlled nutrient gradients, allowing us to study astrocytic response during and after transient nutrient deprivation. Within 24 h of inducing starvation in the platform, nutrient deprivation led to multiple changes in astrocyte response, from metabolic perturbations to gene expression changes, and cell viability. Furthermore, we observed that nutrient restoration did not reverse the functional changes in astrocyte metabolism, which mirrors reperfusion injury observed in vivo . We also identified alterations in numerous glucose metabolism-associated genes, many of which remained upregulated or downregulated even after restoration of the nutrient supply. Together, these findings suggest that astrocyte activation during and after nutrient starvation induces plastic changes that may underpin persistent stroke-induced functional impairment. Overall, our innovative device presents interesting potential to be used in the development of new therapies to improve tissue repair and even cognitive recovery after stroke. Novel microphysiological platform permitting spatial temporal gradients reveals astrocyte placticity.
doi_str_mv 10.1039/d3lc00276d
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d3lc00276d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2838251544</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-125291bfd26ec40e4b59416d17637de73bce416d8a17008b52f13c72a0b941903</originalsourceid><addsrcrecordid>eNpdkctLxDAQxoMoPlYv3pWAFxFW82rTHmXXF6x40XNJk6lGu01NUsWT_7pZV1fwMjOZ-c1HmA-hfUpOKeHlmeGtJoTJ3KyhbSokHxNalOurupRbaCeEZ0JoJvJiE21xKUTBONlGn7dWe9e0gzVWYwNvVgN-t_EJe9Cua-zj4FXdAg69ila1OMK8dz4Vj14ZC10MiXwD1QbctyrEpJKid_ojQpqE3nUBcHR40XwBrDqT2j34ZgjWdbtoo0m7sPeTR-jh8uJ-cj2e3V3dTM5nY825jGPKMlbSujEsBy0IiDorBc0NlTmXBiSvNSzehaKSkKLOWEO5lkyROnEl4SN0vNTtvXsdIMRqboOGtlUduCFUrOAFy9J9REKP_qHPbvBd-l2ickF5losyUSdLKp0vBA9N1Xs7V_6joqRa2FJN-Wzybcs0wYc_kkM9B7NCf31IwMES8EGvpn--8i8kl5OO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864135649</pqid></control><display><type>article</type><title>Microfluidic device with reconfigurable spatial temporal gradients reveals plastic astrocyte response to stroke and reperfusion</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Reed-McBain, Catherine A ; Turaga, Rithvik V ; Zima, Seth R. T ; Abizanda Campo, Sara ; Riendeau, Jeremiah ; Contreras Guzman, Emmanuel ; Juang, Terry D ; Juang, Duane S ; Hampton, David W ; Skala, Melissa C ; Ayuso, Jose M</creator><creatorcontrib>Reed-McBain, Catherine A ; Turaga, Rithvik V ; Zima, Seth R. T ; Abizanda Campo, Sara ; Riendeau, Jeremiah ; Contreras Guzman, Emmanuel ; Juang, Terry D ; Juang, Duane S ; Hampton, David W ; Skala, Melissa C ; Ayuso, Jose M</creatorcontrib><description>As a leading cause of mortality and morbidity, stroke constitutes a significant global health burden. Ischemic stroke accounts for 80% of cases and occurs due to an arterial thrombus, which impedes cerebral blood flow and rapidly leads to cell death. As the most abundant cell type within the central nervous system, astrocytes play a critical role within the injured brain. We developed a novel microphysiological platform that permits the induction of spatiotemporally controlled nutrient gradients, allowing us to study astrocytic response during and after transient nutrient deprivation. Within 24 h of inducing starvation in the platform, nutrient deprivation led to multiple changes in astrocyte response, from metabolic perturbations to gene expression changes, and cell viability. Furthermore, we observed that nutrient restoration did not reverse the functional changes in astrocyte metabolism, which mirrors reperfusion injury observed in vivo . We also identified alterations in numerous glucose metabolism-associated genes, many of which remained upregulated or downregulated even after restoration of the nutrient supply. Together, these findings suggest that astrocyte activation during and after nutrient starvation induces plastic changes that may underpin persistent stroke-induced functional impairment. Overall, our innovative device presents interesting potential to be used in the development of new therapies to improve tissue repair and even cognitive recovery after stroke. Novel microphysiological platform permitting spatial temporal gradients reveals astrocyte placticity.</description><identifier>ISSN: 1473-0197</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/d3lc00276d</identifier><identifier>PMID: 37448230</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Blood flow ; Cell death ; Central nervous system ; Deprivation ; Gene expression ; Metabolism ; Microfluidic devices ; Perturbation ; Public health ; Restoration ; Stroke</subject><ispartof>Lab on a chip, 2023-09, Vol.23 (18), p.3945-396</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-125291bfd26ec40e4b59416d17637de73bce416d8a17008b52f13c72a0b941903</citedby><cites>FETCH-LOGICAL-c337t-125291bfd26ec40e4b59416d17637de73bce416d8a17008b52f13c72a0b941903</cites><orcidid>0009-0001-2406-8830 ; 0000-0002-9414-1845 ; 0000-0002-6832-4277 ; 0000-0002-3014-2849</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37448230$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reed-McBain, Catherine A</creatorcontrib><creatorcontrib>Turaga, Rithvik V</creatorcontrib><creatorcontrib>Zima, Seth R. T</creatorcontrib><creatorcontrib>Abizanda Campo, Sara</creatorcontrib><creatorcontrib>Riendeau, Jeremiah</creatorcontrib><creatorcontrib>Contreras Guzman, Emmanuel</creatorcontrib><creatorcontrib>Juang, Terry D</creatorcontrib><creatorcontrib>Juang, Duane S</creatorcontrib><creatorcontrib>Hampton, David W</creatorcontrib><creatorcontrib>Skala, Melissa C</creatorcontrib><creatorcontrib>Ayuso, Jose M</creatorcontrib><title>Microfluidic device with reconfigurable spatial temporal gradients reveals plastic astrocyte response to stroke and reperfusion</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>As a leading cause of mortality and morbidity, stroke constitutes a significant global health burden. Ischemic stroke accounts for 80% of cases and occurs due to an arterial thrombus, which impedes cerebral blood flow and rapidly leads to cell death. As the most abundant cell type within the central nervous system, astrocytes play a critical role within the injured brain. We developed a novel microphysiological platform that permits the induction of spatiotemporally controlled nutrient gradients, allowing us to study astrocytic response during and after transient nutrient deprivation. Within 24 h of inducing starvation in the platform, nutrient deprivation led to multiple changes in astrocyte response, from metabolic perturbations to gene expression changes, and cell viability. Furthermore, we observed that nutrient restoration did not reverse the functional changes in astrocyte metabolism, which mirrors reperfusion injury observed in vivo . We also identified alterations in numerous glucose metabolism-associated genes, many of which remained upregulated or downregulated even after restoration of the nutrient supply. Together, these findings suggest that astrocyte activation during and after nutrient starvation induces plastic changes that may underpin persistent stroke-induced functional impairment. Overall, our innovative device presents interesting potential to be used in the development of new therapies to improve tissue repair and even cognitive recovery after stroke. Novel microphysiological platform permitting spatial temporal gradients reveals astrocyte placticity.</description><subject>Blood flow</subject><subject>Cell death</subject><subject>Central nervous system</subject><subject>Deprivation</subject><subject>Gene expression</subject><subject>Metabolism</subject><subject>Microfluidic devices</subject><subject>Perturbation</subject><subject>Public health</subject><subject>Restoration</subject><subject>Stroke</subject><issn>1473-0197</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkctLxDAQxoMoPlYv3pWAFxFW82rTHmXXF6x40XNJk6lGu01NUsWT_7pZV1fwMjOZ-c1HmA-hfUpOKeHlmeGtJoTJ3KyhbSokHxNalOurupRbaCeEZ0JoJvJiE21xKUTBONlGn7dWe9e0gzVWYwNvVgN-t_EJe9Cua-zj4FXdAg69ila1OMK8dz4Vj14ZC10MiXwD1QbctyrEpJKid_ojQpqE3nUBcHR40XwBrDqT2j34ZgjWdbtoo0m7sPeTR-jh8uJ-cj2e3V3dTM5nY825jGPKMlbSujEsBy0IiDorBc0NlTmXBiSvNSzehaKSkKLOWEO5lkyROnEl4SN0vNTtvXsdIMRqboOGtlUduCFUrOAFy9J9REKP_qHPbvBd-l2ickF5losyUSdLKp0vBA9N1Xs7V_6joqRa2FJN-Wzybcs0wYc_kkM9B7NCf31IwMES8EGvpn--8i8kl5OO</recordid><startdate>20230913</startdate><enddate>20230913</enddate><creator>Reed-McBain, Catherine A</creator><creator>Turaga, Rithvik V</creator><creator>Zima, Seth R. T</creator><creator>Abizanda Campo, Sara</creator><creator>Riendeau, Jeremiah</creator><creator>Contreras Guzman, Emmanuel</creator><creator>Juang, Terry D</creator><creator>Juang, Duane S</creator><creator>Hampton, David W</creator><creator>Skala, Melissa C</creator><creator>Ayuso, Jose M</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0001-2406-8830</orcidid><orcidid>https://orcid.org/0000-0002-9414-1845</orcidid><orcidid>https://orcid.org/0000-0002-6832-4277</orcidid><orcidid>https://orcid.org/0000-0002-3014-2849</orcidid></search><sort><creationdate>20230913</creationdate><title>Microfluidic device with reconfigurable spatial temporal gradients reveals plastic astrocyte response to stroke and reperfusion</title><author>Reed-McBain, Catherine A ; Turaga, Rithvik V ; Zima, Seth R. T ; Abizanda Campo, Sara ; Riendeau, Jeremiah ; Contreras Guzman, Emmanuel ; Juang, Terry D ; Juang, Duane S ; Hampton, David W ; Skala, Melissa C ; Ayuso, Jose M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-125291bfd26ec40e4b59416d17637de73bce416d8a17008b52f13c72a0b941903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Blood flow</topic><topic>Cell death</topic><topic>Central nervous system</topic><topic>Deprivation</topic><topic>Gene expression</topic><topic>Metabolism</topic><topic>Microfluidic devices</topic><topic>Perturbation</topic><topic>Public health</topic><topic>Restoration</topic><topic>Stroke</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reed-McBain, Catherine A</creatorcontrib><creatorcontrib>Turaga, Rithvik V</creatorcontrib><creatorcontrib>Zima, Seth R. T</creatorcontrib><creatorcontrib>Abizanda Campo, Sara</creatorcontrib><creatorcontrib>Riendeau, Jeremiah</creatorcontrib><creatorcontrib>Contreras Guzman, Emmanuel</creatorcontrib><creatorcontrib>Juang, Terry D</creatorcontrib><creatorcontrib>Juang, Duane S</creatorcontrib><creatorcontrib>Hampton, David W</creatorcontrib><creatorcontrib>Skala, Melissa C</creatorcontrib><creatorcontrib>Ayuso, Jose M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reed-McBain, Catherine A</au><au>Turaga, Rithvik V</au><au>Zima, Seth R. T</au><au>Abizanda Campo, Sara</au><au>Riendeau, Jeremiah</au><au>Contreras Guzman, Emmanuel</au><au>Juang, Terry D</au><au>Juang, Duane S</au><au>Hampton, David W</au><au>Skala, Melissa C</au><au>Ayuso, Jose M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microfluidic device with reconfigurable spatial temporal gradients reveals plastic astrocyte response to stroke and reperfusion</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2023-09-13</date><risdate>2023</risdate><volume>23</volume><issue>18</issue><spage>3945</spage><epage>396</epage><pages>3945-396</pages><issn>1473-0197</issn><eissn>1473-0189</eissn><abstract>As a leading cause of mortality and morbidity, stroke constitutes a significant global health burden. Ischemic stroke accounts for 80% of cases and occurs due to an arterial thrombus, which impedes cerebral blood flow and rapidly leads to cell death. As the most abundant cell type within the central nervous system, astrocytes play a critical role within the injured brain. We developed a novel microphysiological platform that permits the induction of spatiotemporally controlled nutrient gradients, allowing us to study astrocytic response during and after transient nutrient deprivation. Within 24 h of inducing starvation in the platform, nutrient deprivation led to multiple changes in astrocyte response, from metabolic perturbations to gene expression changes, and cell viability. Furthermore, we observed that nutrient restoration did not reverse the functional changes in astrocyte metabolism, which mirrors reperfusion injury observed in vivo . We also identified alterations in numerous glucose metabolism-associated genes, many of which remained upregulated or downregulated even after restoration of the nutrient supply. Together, these findings suggest that astrocyte activation during and after nutrient starvation induces plastic changes that may underpin persistent stroke-induced functional impairment. Overall, our innovative device presents interesting potential to be used in the development of new therapies to improve tissue repair and even cognitive recovery after stroke. Novel microphysiological platform permitting spatial temporal gradients reveals astrocyte placticity.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>37448230</pmid><doi>10.1039/d3lc00276d</doi><tpages>16</tpages><orcidid>https://orcid.org/0009-0001-2406-8830</orcidid><orcidid>https://orcid.org/0000-0002-9414-1845</orcidid><orcidid>https://orcid.org/0000-0002-6832-4277</orcidid><orcidid>https://orcid.org/0000-0002-3014-2849</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1473-0197
ispartof Lab on a chip, 2023-09, Vol.23 (18), p.3945-396
issn 1473-0197
1473-0189
language eng
recordid cdi_rsc_primary_d3lc00276d
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Blood flow
Cell death
Central nervous system
Deprivation
Gene expression
Metabolism
Microfluidic devices
Perturbation
Public health
Restoration
Stroke
title Microfluidic device with reconfigurable spatial temporal gradients reveals plastic astrocyte response to stroke and reperfusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T08%3A49%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microfluidic%20device%20with%20reconfigurable%20spatial%20temporal%20gradients%20reveals%20plastic%20astrocyte%20response%20to%20stroke%20and%20reperfusion&rft.jtitle=Lab%20on%20a%20chip&rft.au=Reed-McBain,%20Catherine%20A&rft.date=2023-09-13&rft.volume=23&rft.issue=18&rft.spage=3945&rft.epage=396&rft.pages=3945-396&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/d3lc00276d&rft_dat=%3Cproquest_rsc_p%3E2838251544%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2864135649&rft_id=info:pmid/37448230&rfr_iscdi=true