Microfluidic device with reconfigurable spatial temporal gradients reveals plastic astrocyte response to stroke and reperfusion
As a leading cause of mortality and morbidity, stroke constitutes a significant global health burden. Ischemic stroke accounts for 80% of cases and occurs due to an arterial thrombus, which impedes cerebral blood flow and rapidly leads to cell death. As the most abundant cell type within the central...
Gespeichert in:
Veröffentlicht in: | Lab on a chip 2023-09, Vol.23 (18), p.3945-396 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 396 |
---|---|
container_issue | 18 |
container_start_page | 3945 |
container_title | Lab on a chip |
container_volume | 23 |
creator | Reed-McBain, Catherine A Turaga, Rithvik V Zima, Seth R. T Abizanda Campo, Sara Riendeau, Jeremiah Contreras Guzman, Emmanuel Juang, Terry D Juang, Duane S Hampton, David W Skala, Melissa C Ayuso, Jose M |
description | As a leading cause of mortality and morbidity, stroke constitutes a significant global health burden. Ischemic stroke accounts for 80% of cases and occurs due to an arterial thrombus, which impedes cerebral blood flow and rapidly leads to cell death. As the most abundant cell type within the central nervous system, astrocytes play a critical role within the injured brain. We developed a novel microphysiological platform that permits the induction of spatiotemporally controlled nutrient gradients, allowing us to study astrocytic response during and after transient nutrient deprivation. Within 24 h of inducing starvation in the platform, nutrient deprivation led to multiple changes in astrocyte response, from metabolic perturbations to gene expression changes, and cell viability. Furthermore, we observed that nutrient restoration did not reverse the functional changes in astrocyte metabolism, which mirrors reperfusion injury observed
in vivo
. We also identified alterations in numerous glucose metabolism-associated genes, many of which remained upregulated or downregulated even after restoration of the nutrient supply. Together, these findings suggest that astrocyte activation during and after nutrient starvation induces plastic changes that may underpin persistent stroke-induced functional impairment. Overall, our innovative device presents interesting potential to be used in the development of new therapies to improve tissue repair and even cognitive recovery after stroke.
Novel microphysiological platform permitting spatial temporal gradients reveals astrocyte placticity. |
doi_str_mv | 10.1039/d3lc00276d |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d3lc00276d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2838251544</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-125291bfd26ec40e4b59416d17637de73bce416d8a17008b52f13c72a0b941903</originalsourceid><addsrcrecordid>eNpdkctLxDAQxoMoPlYv3pWAFxFW82rTHmXXF6x40XNJk6lGu01NUsWT_7pZV1fwMjOZ-c1HmA-hfUpOKeHlmeGtJoTJ3KyhbSokHxNalOurupRbaCeEZ0JoJvJiE21xKUTBONlGn7dWe9e0gzVWYwNvVgN-t_EJe9Cua-zj4FXdAg69ila1OMK8dz4Vj14ZC10MiXwD1QbctyrEpJKid_ojQpqE3nUBcHR40XwBrDqT2j34ZgjWdbtoo0m7sPeTR-jh8uJ-cj2e3V3dTM5nY825jGPKMlbSujEsBy0IiDorBc0NlTmXBiSvNSzehaKSkKLOWEO5lkyROnEl4SN0vNTtvXsdIMRqboOGtlUduCFUrOAFy9J9REKP_qHPbvBd-l2ickF5losyUSdLKp0vBA9N1Xs7V_6joqRa2FJN-Wzybcs0wYc_kkM9B7NCf31IwMES8EGvpn--8i8kl5OO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864135649</pqid></control><display><type>article</type><title>Microfluidic device with reconfigurable spatial temporal gradients reveals plastic astrocyte response to stroke and reperfusion</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Reed-McBain, Catherine A ; Turaga, Rithvik V ; Zima, Seth R. T ; Abizanda Campo, Sara ; Riendeau, Jeremiah ; Contreras Guzman, Emmanuel ; Juang, Terry D ; Juang, Duane S ; Hampton, David W ; Skala, Melissa C ; Ayuso, Jose M</creator><creatorcontrib>Reed-McBain, Catherine A ; Turaga, Rithvik V ; Zima, Seth R. T ; Abizanda Campo, Sara ; Riendeau, Jeremiah ; Contreras Guzman, Emmanuel ; Juang, Terry D ; Juang, Duane S ; Hampton, David W ; Skala, Melissa C ; Ayuso, Jose M</creatorcontrib><description>As a leading cause of mortality and morbidity, stroke constitutes a significant global health burden. Ischemic stroke accounts for 80% of cases and occurs due to an arterial thrombus, which impedes cerebral blood flow and rapidly leads to cell death. As the most abundant cell type within the central nervous system, astrocytes play a critical role within the injured brain. We developed a novel microphysiological platform that permits the induction of spatiotemporally controlled nutrient gradients, allowing us to study astrocytic response during and after transient nutrient deprivation. Within 24 h of inducing starvation in the platform, nutrient deprivation led to multiple changes in astrocyte response, from metabolic perturbations to gene expression changes, and cell viability. Furthermore, we observed that nutrient restoration did not reverse the functional changes in astrocyte metabolism, which mirrors reperfusion injury observed
in vivo
. We also identified alterations in numerous glucose metabolism-associated genes, many of which remained upregulated or downregulated even after restoration of the nutrient supply. Together, these findings suggest that astrocyte activation during and after nutrient starvation induces plastic changes that may underpin persistent stroke-induced functional impairment. Overall, our innovative device presents interesting potential to be used in the development of new therapies to improve tissue repair and even cognitive recovery after stroke.
Novel microphysiological platform permitting spatial temporal gradients reveals astrocyte placticity.</description><identifier>ISSN: 1473-0197</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/d3lc00276d</identifier><identifier>PMID: 37448230</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Blood flow ; Cell death ; Central nervous system ; Deprivation ; Gene expression ; Metabolism ; Microfluidic devices ; Perturbation ; Public health ; Restoration ; Stroke</subject><ispartof>Lab on a chip, 2023-09, Vol.23 (18), p.3945-396</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-125291bfd26ec40e4b59416d17637de73bce416d8a17008b52f13c72a0b941903</citedby><cites>FETCH-LOGICAL-c337t-125291bfd26ec40e4b59416d17637de73bce416d8a17008b52f13c72a0b941903</cites><orcidid>0009-0001-2406-8830 ; 0000-0002-9414-1845 ; 0000-0002-6832-4277 ; 0000-0002-3014-2849</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37448230$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reed-McBain, Catherine A</creatorcontrib><creatorcontrib>Turaga, Rithvik V</creatorcontrib><creatorcontrib>Zima, Seth R. T</creatorcontrib><creatorcontrib>Abizanda Campo, Sara</creatorcontrib><creatorcontrib>Riendeau, Jeremiah</creatorcontrib><creatorcontrib>Contreras Guzman, Emmanuel</creatorcontrib><creatorcontrib>Juang, Terry D</creatorcontrib><creatorcontrib>Juang, Duane S</creatorcontrib><creatorcontrib>Hampton, David W</creatorcontrib><creatorcontrib>Skala, Melissa C</creatorcontrib><creatorcontrib>Ayuso, Jose M</creatorcontrib><title>Microfluidic device with reconfigurable spatial temporal gradients reveals plastic astrocyte response to stroke and reperfusion</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>As a leading cause of mortality and morbidity, stroke constitutes a significant global health burden. Ischemic stroke accounts for 80% of cases and occurs due to an arterial thrombus, which impedes cerebral blood flow and rapidly leads to cell death. As the most abundant cell type within the central nervous system, astrocytes play a critical role within the injured brain. We developed a novel microphysiological platform that permits the induction of spatiotemporally controlled nutrient gradients, allowing us to study astrocytic response during and after transient nutrient deprivation. Within 24 h of inducing starvation in the platform, nutrient deprivation led to multiple changes in astrocyte response, from metabolic perturbations to gene expression changes, and cell viability. Furthermore, we observed that nutrient restoration did not reverse the functional changes in astrocyte metabolism, which mirrors reperfusion injury observed
in vivo
. We also identified alterations in numerous glucose metabolism-associated genes, many of which remained upregulated or downregulated even after restoration of the nutrient supply. Together, these findings suggest that astrocyte activation during and after nutrient starvation induces plastic changes that may underpin persistent stroke-induced functional impairment. Overall, our innovative device presents interesting potential to be used in the development of new therapies to improve tissue repair and even cognitive recovery after stroke.
Novel microphysiological platform permitting spatial temporal gradients reveals astrocyte placticity.</description><subject>Blood flow</subject><subject>Cell death</subject><subject>Central nervous system</subject><subject>Deprivation</subject><subject>Gene expression</subject><subject>Metabolism</subject><subject>Microfluidic devices</subject><subject>Perturbation</subject><subject>Public health</subject><subject>Restoration</subject><subject>Stroke</subject><issn>1473-0197</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkctLxDAQxoMoPlYv3pWAFxFW82rTHmXXF6x40XNJk6lGu01NUsWT_7pZV1fwMjOZ-c1HmA-hfUpOKeHlmeGtJoTJ3KyhbSokHxNalOurupRbaCeEZ0JoJvJiE21xKUTBONlGn7dWe9e0gzVWYwNvVgN-t_EJe9Cua-zj4FXdAg69ila1OMK8dz4Vj14ZC10MiXwD1QbctyrEpJKid_ojQpqE3nUBcHR40XwBrDqT2j34ZgjWdbtoo0m7sPeTR-jh8uJ-cj2e3V3dTM5nY825jGPKMlbSujEsBy0IiDorBc0NlTmXBiSvNSzehaKSkKLOWEO5lkyROnEl4SN0vNTtvXsdIMRqboOGtlUduCFUrOAFy9J9REKP_qHPbvBd-l2ickF5losyUSdLKp0vBA9N1Xs7V_6joqRa2FJN-Wzybcs0wYc_kkM9B7NCf31IwMES8EGvpn--8i8kl5OO</recordid><startdate>20230913</startdate><enddate>20230913</enddate><creator>Reed-McBain, Catherine A</creator><creator>Turaga, Rithvik V</creator><creator>Zima, Seth R. T</creator><creator>Abizanda Campo, Sara</creator><creator>Riendeau, Jeremiah</creator><creator>Contreras Guzman, Emmanuel</creator><creator>Juang, Terry D</creator><creator>Juang, Duane S</creator><creator>Hampton, David W</creator><creator>Skala, Melissa C</creator><creator>Ayuso, Jose M</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0001-2406-8830</orcidid><orcidid>https://orcid.org/0000-0002-9414-1845</orcidid><orcidid>https://orcid.org/0000-0002-6832-4277</orcidid><orcidid>https://orcid.org/0000-0002-3014-2849</orcidid></search><sort><creationdate>20230913</creationdate><title>Microfluidic device with reconfigurable spatial temporal gradients reveals plastic astrocyte response to stroke and reperfusion</title><author>Reed-McBain, Catherine A ; Turaga, Rithvik V ; Zima, Seth R. T ; Abizanda Campo, Sara ; Riendeau, Jeremiah ; Contreras Guzman, Emmanuel ; Juang, Terry D ; Juang, Duane S ; Hampton, David W ; Skala, Melissa C ; Ayuso, Jose M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-125291bfd26ec40e4b59416d17637de73bce416d8a17008b52f13c72a0b941903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Blood flow</topic><topic>Cell death</topic><topic>Central nervous system</topic><topic>Deprivation</topic><topic>Gene expression</topic><topic>Metabolism</topic><topic>Microfluidic devices</topic><topic>Perturbation</topic><topic>Public health</topic><topic>Restoration</topic><topic>Stroke</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reed-McBain, Catherine A</creatorcontrib><creatorcontrib>Turaga, Rithvik V</creatorcontrib><creatorcontrib>Zima, Seth R. T</creatorcontrib><creatorcontrib>Abizanda Campo, Sara</creatorcontrib><creatorcontrib>Riendeau, Jeremiah</creatorcontrib><creatorcontrib>Contreras Guzman, Emmanuel</creatorcontrib><creatorcontrib>Juang, Terry D</creatorcontrib><creatorcontrib>Juang, Duane S</creatorcontrib><creatorcontrib>Hampton, David W</creatorcontrib><creatorcontrib>Skala, Melissa C</creatorcontrib><creatorcontrib>Ayuso, Jose M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reed-McBain, Catherine A</au><au>Turaga, Rithvik V</au><au>Zima, Seth R. T</au><au>Abizanda Campo, Sara</au><au>Riendeau, Jeremiah</au><au>Contreras Guzman, Emmanuel</au><au>Juang, Terry D</au><au>Juang, Duane S</au><au>Hampton, David W</au><au>Skala, Melissa C</au><au>Ayuso, Jose M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microfluidic device with reconfigurable spatial temporal gradients reveals plastic astrocyte response to stroke and reperfusion</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2023-09-13</date><risdate>2023</risdate><volume>23</volume><issue>18</issue><spage>3945</spage><epage>396</epage><pages>3945-396</pages><issn>1473-0197</issn><eissn>1473-0189</eissn><abstract>As a leading cause of mortality and morbidity, stroke constitutes a significant global health burden. Ischemic stroke accounts for 80% of cases and occurs due to an arterial thrombus, which impedes cerebral blood flow and rapidly leads to cell death. As the most abundant cell type within the central nervous system, astrocytes play a critical role within the injured brain. We developed a novel microphysiological platform that permits the induction of spatiotemporally controlled nutrient gradients, allowing us to study astrocytic response during and after transient nutrient deprivation. Within 24 h of inducing starvation in the platform, nutrient deprivation led to multiple changes in astrocyte response, from metabolic perturbations to gene expression changes, and cell viability. Furthermore, we observed that nutrient restoration did not reverse the functional changes in astrocyte metabolism, which mirrors reperfusion injury observed
in vivo
. We also identified alterations in numerous glucose metabolism-associated genes, many of which remained upregulated or downregulated even after restoration of the nutrient supply. Together, these findings suggest that astrocyte activation during and after nutrient starvation induces plastic changes that may underpin persistent stroke-induced functional impairment. Overall, our innovative device presents interesting potential to be used in the development of new therapies to improve tissue repair and even cognitive recovery after stroke.
Novel microphysiological platform permitting spatial temporal gradients reveals astrocyte placticity.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>37448230</pmid><doi>10.1039/d3lc00276d</doi><tpages>16</tpages><orcidid>https://orcid.org/0009-0001-2406-8830</orcidid><orcidid>https://orcid.org/0000-0002-9414-1845</orcidid><orcidid>https://orcid.org/0000-0002-6832-4277</orcidid><orcidid>https://orcid.org/0000-0002-3014-2849</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1473-0197 |
ispartof | Lab on a chip, 2023-09, Vol.23 (18), p.3945-396 |
issn | 1473-0197 1473-0189 |
language | eng |
recordid | cdi_rsc_primary_d3lc00276d |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Blood flow Cell death Central nervous system Deprivation Gene expression Metabolism Microfluidic devices Perturbation Public health Restoration Stroke |
title | Microfluidic device with reconfigurable spatial temporal gradients reveals plastic astrocyte response to stroke and reperfusion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T08%3A49%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microfluidic%20device%20with%20reconfigurable%20spatial%20temporal%20gradients%20reveals%20plastic%20astrocyte%20response%20to%20stroke%20and%20reperfusion&rft.jtitle=Lab%20on%20a%20chip&rft.au=Reed-McBain,%20Catherine%20A&rft.date=2023-09-13&rft.volume=23&rft.issue=18&rft.spage=3945&rft.epage=396&rft.pages=3945-396&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/d3lc00276d&rft_dat=%3Cproquest_rsc_p%3E2838251544%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2864135649&rft_id=info:pmid/37448230&rfr_iscdi=true |