Enabling batch and microfluidic non-thermal plasma chemistry: reactor design and testing

Non-thermal plasma (NTP) is a promising state of matter for carrying out chemical reactions. NTP offers high densities of reactive species, without the need for a catalyst, while operating at atmospheric pressure and remaining at moderate temperature. Despite its potential, NTP cannot be used compre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lab on a chip 2023-06, Vol.23 (12), p.272-2728
Hauptverfasser: Roszkowska, P, Dickenson, A, Higham, J. E, Easun, T. L, Walsh, J. L, Slater, A. G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2728
container_issue 12
container_start_page 272
container_title Lab on a chip
container_volume 23
creator Roszkowska, P
Dickenson, A
Higham, J. E
Easun, T. L
Walsh, J. L
Slater, A. G
description Non-thermal plasma (NTP) is a promising state of matter for carrying out chemical reactions. NTP offers high densities of reactive species, without the need for a catalyst, while operating at atmospheric pressure and remaining at moderate temperature. Despite its potential, NTP cannot be used comprehensively in reactions until the complex interactions of NTP and liquids are better understood. To achieve this, NTP reactors that can overcome challenges with solvent evaporation, enable inline data collection, and achieve high selectivity, high yield, and high throughput are required. Here, we detail the construction of i) a microfluidic reactor for chemical reactions using NTP in organic solvents and ii) a corresponding batch setup for control studies and scale-up. The use of microfluidics enables controlled generation of NTP and subsequent mixing with reaction media without loss of solvent. The construction of a low-cost custom mount enables inline optical emission spectroscopy using a fibre optic probe at points along the fluidic pathway, which is used to probe species arising from NTP interacting with solvents. We demonstrate the decomposition of methylene blue in both reactors, developing an underpinning framework for applications in NTP chemical synthesis. A microfluidic plasma jet reactor equipped with optical emission spectroscopy: benchmarking investigations for the fundamentals of non-thermal plasma chemistry.
doi_str_mv 10.1039/d3lc00016h
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d3lc00016h</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2818058175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-fb662790cdf48a475e413185953bc877c60fe72bc26aed92897d9293899833683</originalsourceid><addsrcrecordid>eNpd0U1LwzAYB_AgipvTi3cl4EWEal6aJvEmczph4EXBW0nTdOtI05m0h317sxcneEkC-eV5Hv4B4BKje4yofCip1QghnC2OwBCnnCYIC3l8OEs-AGchLCNhaSZOwYByggXB6RB8TZwqbO3msFCdXkDlStjU2reV7euy1tC1LukWxjfKwpVVoVFQL0xTh86vH6E3Sneth6UJ9dxtX3cmdLHeOTiplA3mYr-PwOfL5GM8TWbvr2_jp1miKaddUhVZRrhEuqxSoVLOTIopFkwyWmjBuc5QZTgpNMmUKSURksdVUiGloDQTdARud3VXvv3uY-88zqaNtcqZtg85EVggJjBnkd78o8u29y5OFxVhGEnKNupup2IIIXhT5StfN8qvc4zyTd75M52Nt3lPI77el-yLxpQH-htwBFc74IM-3P59GP0Bw7yDLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2825109355</pqid></control><display><type>article</type><title>Enabling batch and microfluidic non-thermal plasma chemistry: reactor design and testing</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Roszkowska, P ; Dickenson, A ; Higham, J. E ; Easun, T. L ; Walsh, J. L ; Slater, A. G</creator><creatorcontrib>Roszkowska, P ; Dickenson, A ; Higham, J. E ; Easun, T. L ; Walsh, J. L ; Slater, A. G</creatorcontrib><description>Non-thermal plasma (NTP) is a promising state of matter for carrying out chemical reactions. NTP offers high densities of reactive species, without the need for a catalyst, while operating at atmospheric pressure and remaining at moderate temperature. Despite its potential, NTP cannot be used comprehensively in reactions until the complex interactions of NTP and liquids are better understood. To achieve this, NTP reactors that can overcome challenges with solvent evaporation, enable inline data collection, and achieve high selectivity, high yield, and high throughput are required. Here, we detail the construction of i) a microfluidic reactor for chemical reactions using NTP in organic solvents and ii) a corresponding batch setup for control studies and scale-up. The use of microfluidics enables controlled generation of NTP and subsequent mixing with reaction media without loss of solvent. The construction of a low-cost custom mount enables inline optical emission spectroscopy using a fibre optic probe at points along the fluidic pathway, which is used to probe species arising from NTP interacting with solvents. We demonstrate the decomposition of methylene blue in both reactors, developing an underpinning framework for applications in NTP chemical synthesis. A microfluidic plasma jet reactor equipped with optical emission spectroscopy: benchmarking investigations for the fundamentals of non-thermal plasma chemistry.</description><identifier>ISSN: 1473-0197</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/d3lc00016h</identifier><identifier>PMID: 37218214</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Chemical reactions ; Chemical synthesis ; Decomposition reactions ; Methylene blue ; Microfluidics ; Optical emission spectroscopy ; Plasma chemistry ; Reactor design ; Reactors ; Solvents ; Thermal plasmas</subject><ispartof>Lab on a chip, 2023-06, Vol.23 (12), p.272-2728</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-fb662790cdf48a475e413185953bc877c60fe72bc26aed92897d9293899833683</citedby><cites>FETCH-LOGICAL-c373t-fb662790cdf48a475e413185953bc877c60fe72bc26aed92897d9293899833683</cites><orcidid>0000-0002-0713-2642 ; 0000-0002-4055-7992 ; 0000-0002-1435-4331 ; 0000-0003-4721-7138</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37218214$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Roszkowska, P</creatorcontrib><creatorcontrib>Dickenson, A</creatorcontrib><creatorcontrib>Higham, J. E</creatorcontrib><creatorcontrib>Easun, T. L</creatorcontrib><creatorcontrib>Walsh, J. L</creatorcontrib><creatorcontrib>Slater, A. G</creatorcontrib><title>Enabling batch and microfluidic non-thermal plasma chemistry: reactor design and testing</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>Non-thermal plasma (NTP) is a promising state of matter for carrying out chemical reactions. NTP offers high densities of reactive species, without the need for a catalyst, while operating at atmospheric pressure and remaining at moderate temperature. Despite its potential, NTP cannot be used comprehensively in reactions until the complex interactions of NTP and liquids are better understood. To achieve this, NTP reactors that can overcome challenges with solvent evaporation, enable inline data collection, and achieve high selectivity, high yield, and high throughput are required. Here, we detail the construction of i) a microfluidic reactor for chemical reactions using NTP in organic solvents and ii) a corresponding batch setup for control studies and scale-up. The use of microfluidics enables controlled generation of NTP and subsequent mixing with reaction media without loss of solvent. The construction of a low-cost custom mount enables inline optical emission spectroscopy using a fibre optic probe at points along the fluidic pathway, which is used to probe species arising from NTP interacting with solvents. We demonstrate the decomposition of methylene blue in both reactors, developing an underpinning framework for applications in NTP chemical synthesis. A microfluidic plasma jet reactor equipped with optical emission spectroscopy: benchmarking investigations for the fundamentals of non-thermal plasma chemistry.</description><subject>Chemical reactions</subject><subject>Chemical synthesis</subject><subject>Decomposition reactions</subject><subject>Methylene blue</subject><subject>Microfluidics</subject><subject>Optical emission spectroscopy</subject><subject>Plasma chemistry</subject><subject>Reactor design</subject><subject>Reactors</subject><subject>Solvents</subject><subject>Thermal plasmas</subject><issn>1473-0197</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0U1LwzAYB_AgipvTi3cl4EWEal6aJvEmczph4EXBW0nTdOtI05m0h317sxcneEkC-eV5Hv4B4BKje4yofCip1QghnC2OwBCnnCYIC3l8OEs-AGchLCNhaSZOwYByggXB6RB8TZwqbO3msFCdXkDlStjU2reV7euy1tC1LukWxjfKwpVVoVFQL0xTh86vH6E3Sneth6UJ9dxtX3cmdLHeOTiplA3mYr-PwOfL5GM8TWbvr2_jp1miKaddUhVZRrhEuqxSoVLOTIopFkwyWmjBuc5QZTgpNMmUKSURksdVUiGloDQTdARud3VXvv3uY-88zqaNtcqZtg85EVggJjBnkd78o8u29y5OFxVhGEnKNupup2IIIXhT5StfN8qvc4zyTd75M52Nt3lPI77el-yLxpQH-htwBFc74IM-3P59GP0Bw7yDLA</recordid><startdate>20230613</startdate><enddate>20230613</enddate><creator>Roszkowska, P</creator><creator>Dickenson, A</creator><creator>Higham, J. E</creator><creator>Easun, T. L</creator><creator>Walsh, J. L</creator><creator>Slater, A. G</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0713-2642</orcidid><orcidid>https://orcid.org/0000-0002-4055-7992</orcidid><orcidid>https://orcid.org/0000-0002-1435-4331</orcidid><orcidid>https://orcid.org/0000-0003-4721-7138</orcidid></search><sort><creationdate>20230613</creationdate><title>Enabling batch and microfluidic non-thermal plasma chemistry: reactor design and testing</title><author>Roszkowska, P ; Dickenson, A ; Higham, J. E ; Easun, T. L ; Walsh, J. L ; Slater, A. G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-fb662790cdf48a475e413185953bc877c60fe72bc26aed92897d9293899833683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemical reactions</topic><topic>Chemical synthesis</topic><topic>Decomposition reactions</topic><topic>Methylene blue</topic><topic>Microfluidics</topic><topic>Optical emission spectroscopy</topic><topic>Plasma chemistry</topic><topic>Reactor design</topic><topic>Reactors</topic><topic>Solvents</topic><topic>Thermal plasmas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roszkowska, P</creatorcontrib><creatorcontrib>Dickenson, A</creatorcontrib><creatorcontrib>Higham, J. E</creatorcontrib><creatorcontrib>Easun, T. L</creatorcontrib><creatorcontrib>Walsh, J. L</creatorcontrib><creatorcontrib>Slater, A. G</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roszkowska, P</au><au>Dickenson, A</au><au>Higham, J. E</au><au>Easun, T. L</au><au>Walsh, J. L</au><au>Slater, A. G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enabling batch and microfluidic non-thermal plasma chemistry: reactor design and testing</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2023-06-13</date><risdate>2023</risdate><volume>23</volume><issue>12</issue><spage>272</spage><epage>2728</epage><pages>272-2728</pages><issn>1473-0197</issn><eissn>1473-0189</eissn><abstract>Non-thermal plasma (NTP) is a promising state of matter for carrying out chemical reactions. NTP offers high densities of reactive species, without the need for a catalyst, while operating at atmospheric pressure and remaining at moderate temperature. Despite its potential, NTP cannot be used comprehensively in reactions until the complex interactions of NTP and liquids are better understood. To achieve this, NTP reactors that can overcome challenges with solvent evaporation, enable inline data collection, and achieve high selectivity, high yield, and high throughput are required. Here, we detail the construction of i) a microfluidic reactor for chemical reactions using NTP in organic solvents and ii) a corresponding batch setup for control studies and scale-up. The use of microfluidics enables controlled generation of NTP and subsequent mixing with reaction media without loss of solvent. The construction of a low-cost custom mount enables inline optical emission spectroscopy using a fibre optic probe at points along the fluidic pathway, which is used to probe species arising from NTP interacting with solvents. We demonstrate the decomposition of methylene blue in both reactors, developing an underpinning framework for applications in NTP chemical synthesis. A microfluidic plasma jet reactor equipped with optical emission spectroscopy: benchmarking investigations for the fundamentals of non-thermal plasma chemistry.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>37218214</pmid><doi>10.1039/d3lc00016h</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0713-2642</orcidid><orcidid>https://orcid.org/0000-0002-4055-7992</orcidid><orcidid>https://orcid.org/0000-0002-1435-4331</orcidid><orcidid>https://orcid.org/0000-0003-4721-7138</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1473-0197
ispartof Lab on a chip, 2023-06, Vol.23 (12), p.272-2728
issn 1473-0197
1473-0189
language eng
recordid cdi_rsc_primary_d3lc00016h
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Chemical reactions
Chemical synthesis
Decomposition reactions
Methylene blue
Microfluidics
Optical emission spectroscopy
Plasma chemistry
Reactor design
Reactors
Solvents
Thermal plasmas
title Enabling batch and microfluidic non-thermal plasma chemistry: reactor design and testing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A25%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enabling%20batch%20and%20microfluidic%20non-thermal%20plasma%20chemistry:%20reactor%20design%20and%20testing&rft.jtitle=Lab%20on%20a%20chip&rft.au=Roszkowska,%20P&rft.date=2023-06-13&rft.volume=23&rft.issue=12&rft.spage=272&rft.epage=2728&rft.pages=272-2728&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/d3lc00016h&rft_dat=%3Cproquest_rsc_p%3E2818058175%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2825109355&rft_id=info:pmid/37218214&rfr_iscdi=true