Maximization of hydrogen peroxide utilization in a proton exchange membrane HO electrolyzer for efficient power-to-hydrogen conversion

A hydrogen peroxide electrolyzer (HPEL) is the workhorse for an energy storage system based on the H 2 O 2 electrochemical cycle. The high H 2 O 2 utilization towards power-to-hydrogen conversion in the HPEL is essential to ensure the efficiency and cyclability of the system. Unfortunately, the H 2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Green chemistry : an international journal and green chemistry resource : GC 2024-07, Vol.26 (13), p.7769-7778
Hauptverfasser: Yang, Jie, Ding, Ruimin, Liu, Chang, Chen, Lifang, Wang, Qi, Liu, Shanshan, Xu, Qinchao, Yin, Xi
Format: Artikel
Sprache:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7778
container_issue 13
container_start_page 7769
container_title Green chemistry : an international journal and green chemistry resource : GC
container_volume 26
creator Yang, Jie
Ding, Ruimin
Liu, Chang
Chen, Lifang
Wang, Qi
Liu, Shanshan
Xu, Qinchao
Yin, Xi
description A hydrogen peroxide electrolyzer (HPEL) is the workhorse for an energy storage system based on the H 2 O 2 electrochemical cycle. The high H 2 O 2 utilization towards power-to-hydrogen conversion in the HPEL is essential to ensure the efficiency and cyclability of the system. Unfortunately, the H 2 O 2 disproportionation at the anode and its crossover to the cathode in a proton exchange membrane (PEM) HPEL is detrimental to H 2 O 2 utilization and must be mitigated. This work investigates the effects of the catalyst type, anode catalyst loading, and PEM thickness on H 2 O 2 utilization in a PEM HPEL. The results show that the Co-N-C catalyst exhibits higher H 2 O 2 utilization than the Fe-N-C and Pt/C catalysts due to its higher selectivity towards the hydrogen peroxide oxidation reaction (HPOR) and the lesser H 2 O 2 disproportionation reaction (HPDR). Increasing the Co-N-C catalyst loading and PEM thickness can effectively inhibit the H 2 O 2 crossover and improve the H 2 O 2 utilization. On the other hand, the portion of the HPDR and the ohmic loss increase with the catalyst loading and PEM thickness, respectively. A maximum H 2 O 2 utilization of over 98% can be achieved by balancing these factors. These results provide valuable guides to the catalyst design and device optimization for efficient energy storage systems based on the electrochemical H 2 O 2 -H 2 cycle. A proton exchange membrane H 2 O 2 electrolyzer for maximization of hydrogen peroxide utilization.
doi_str_mv 10.1039/d3gc03200k
format Article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_d3gc03200k</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d3gc03200k</sourcerecordid><originalsourceid>FETCH-rsc_primary_d3gc03200k3</originalsourceid><addsrcrecordid>eNqFj81OwzAQhK0KpJafC_dK-wIBO65S9VyBeqm4cK-Ms04XEm-0NpD0AXju9gDlyGk-aUYzGqXujL432q4eatt4bUut3ydqZhaVLVblUl-cuSqn6iqlN62NWVaLmfreuoE6OrhMHIED7MdauMEIPQoPVCN8ZGp_AxTBQS-cT4yD37vYIHTYvYqLCJtnwBZ9Fm7HAwoEFsAQyBPGDD1_oRSZi_OE5_iJkk7FN-oyuDbh7Y9eq_nT48t6U0jyu16oczLu_s7Z__wj_uBWZw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Maximization of hydrogen peroxide utilization in a proton exchange membrane HO electrolyzer for efficient power-to-hydrogen conversion</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Yang, Jie ; Ding, Ruimin ; Liu, Chang ; Chen, Lifang ; Wang, Qi ; Liu, Shanshan ; Xu, Qinchao ; Yin, Xi</creator><creatorcontrib>Yang, Jie ; Ding, Ruimin ; Liu, Chang ; Chen, Lifang ; Wang, Qi ; Liu, Shanshan ; Xu, Qinchao ; Yin, Xi</creatorcontrib><description>A hydrogen peroxide electrolyzer (HPEL) is the workhorse for an energy storage system based on the H 2 O 2 electrochemical cycle. The high H 2 O 2 utilization towards power-to-hydrogen conversion in the HPEL is essential to ensure the efficiency and cyclability of the system. Unfortunately, the H 2 O 2 disproportionation at the anode and its crossover to the cathode in a proton exchange membrane (PEM) HPEL is detrimental to H 2 O 2 utilization and must be mitigated. This work investigates the effects of the catalyst type, anode catalyst loading, and PEM thickness on H 2 O 2 utilization in a PEM HPEL. The results show that the Co-N-C catalyst exhibits higher H 2 O 2 utilization than the Fe-N-C and Pt/C catalysts due to its higher selectivity towards the hydrogen peroxide oxidation reaction (HPOR) and the lesser H 2 O 2 disproportionation reaction (HPDR). Increasing the Co-N-C catalyst loading and PEM thickness can effectively inhibit the H 2 O 2 crossover and improve the H 2 O 2 utilization. On the other hand, the portion of the HPDR and the ohmic loss increase with the catalyst loading and PEM thickness, respectively. A maximum H 2 O 2 utilization of over 98% can be achieved by balancing these factors. These results provide valuable guides to the catalyst design and device optimization for efficient energy storage systems based on the electrochemical H 2 O 2 -H 2 cycle. A proton exchange membrane H 2 O 2 electrolyzer for maximization of hydrogen peroxide utilization.</description><identifier>ISSN: 1463-9262</identifier><identifier>EISSN: 1463-9270</identifier><identifier>DOI: 10.1039/d3gc03200k</identifier><ispartof>Green chemistry : an international journal and green chemistry resource : GC, 2024-07, Vol.26 (13), p.7769-7778</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Yang, Jie</creatorcontrib><creatorcontrib>Ding, Ruimin</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Chen, Lifang</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Liu, Shanshan</creatorcontrib><creatorcontrib>Xu, Qinchao</creatorcontrib><creatorcontrib>Yin, Xi</creatorcontrib><title>Maximization of hydrogen peroxide utilization in a proton exchange membrane HO electrolyzer for efficient power-to-hydrogen conversion</title><title>Green chemistry : an international journal and green chemistry resource : GC</title><description>A hydrogen peroxide electrolyzer (HPEL) is the workhorse for an energy storage system based on the H 2 O 2 electrochemical cycle. The high H 2 O 2 utilization towards power-to-hydrogen conversion in the HPEL is essential to ensure the efficiency and cyclability of the system. Unfortunately, the H 2 O 2 disproportionation at the anode and its crossover to the cathode in a proton exchange membrane (PEM) HPEL is detrimental to H 2 O 2 utilization and must be mitigated. This work investigates the effects of the catalyst type, anode catalyst loading, and PEM thickness on H 2 O 2 utilization in a PEM HPEL. The results show that the Co-N-C catalyst exhibits higher H 2 O 2 utilization than the Fe-N-C and Pt/C catalysts due to its higher selectivity towards the hydrogen peroxide oxidation reaction (HPOR) and the lesser H 2 O 2 disproportionation reaction (HPDR). Increasing the Co-N-C catalyst loading and PEM thickness can effectively inhibit the H 2 O 2 crossover and improve the H 2 O 2 utilization. On the other hand, the portion of the HPDR and the ohmic loss increase with the catalyst loading and PEM thickness, respectively. A maximum H 2 O 2 utilization of over 98% can be achieved by balancing these factors. These results provide valuable guides to the catalyst design and device optimization for efficient energy storage systems based on the electrochemical H 2 O 2 -H 2 cycle. A proton exchange membrane H 2 O 2 electrolyzer for maximization of hydrogen peroxide utilization.</description><issn>1463-9262</issn><issn>1463-9270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFj81OwzAQhK0KpJafC_dK-wIBO65S9VyBeqm4cK-Ms04XEm-0NpD0AXju9gDlyGk-aUYzGqXujL432q4eatt4bUut3ydqZhaVLVblUl-cuSqn6iqlN62NWVaLmfreuoE6OrhMHIED7MdauMEIPQoPVCN8ZGp_AxTBQS-cT4yD37vYIHTYvYqLCJtnwBZ9Fm7HAwoEFsAQyBPGDD1_oRSZi_OE5_iJkk7FN-oyuDbh7Y9eq_nT48t6U0jyu16oczLu_s7Z__wj_uBWZw</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Yang, Jie</creator><creator>Ding, Ruimin</creator><creator>Liu, Chang</creator><creator>Chen, Lifang</creator><creator>Wang, Qi</creator><creator>Liu, Shanshan</creator><creator>Xu, Qinchao</creator><creator>Yin, Xi</creator><scope/></search><sort><creationdate>20240701</creationdate><title>Maximization of hydrogen peroxide utilization in a proton exchange membrane HO electrolyzer for efficient power-to-hydrogen conversion</title><author>Yang, Jie ; Ding, Ruimin ; Liu, Chang ; Chen, Lifang ; Wang, Qi ; Liu, Shanshan ; Xu, Qinchao ; Yin, Xi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_d3gc03200k3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Jie</creatorcontrib><creatorcontrib>Ding, Ruimin</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Chen, Lifang</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Liu, Shanshan</creatorcontrib><creatorcontrib>Xu, Qinchao</creatorcontrib><creatorcontrib>Yin, Xi</creatorcontrib><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Jie</au><au>Ding, Ruimin</au><au>Liu, Chang</au><au>Chen, Lifang</au><au>Wang, Qi</au><au>Liu, Shanshan</au><au>Xu, Qinchao</au><au>Yin, Xi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximization of hydrogen peroxide utilization in a proton exchange membrane HO electrolyzer for efficient power-to-hydrogen conversion</atitle><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>26</volume><issue>13</issue><spage>7769</spage><epage>7778</epage><pages>7769-7778</pages><issn>1463-9262</issn><eissn>1463-9270</eissn><abstract>A hydrogen peroxide electrolyzer (HPEL) is the workhorse for an energy storage system based on the H 2 O 2 electrochemical cycle. The high H 2 O 2 utilization towards power-to-hydrogen conversion in the HPEL is essential to ensure the efficiency and cyclability of the system. Unfortunately, the H 2 O 2 disproportionation at the anode and its crossover to the cathode in a proton exchange membrane (PEM) HPEL is detrimental to H 2 O 2 utilization and must be mitigated. This work investigates the effects of the catalyst type, anode catalyst loading, and PEM thickness on H 2 O 2 utilization in a PEM HPEL. The results show that the Co-N-C catalyst exhibits higher H 2 O 2 utilization than the Fe-N-C and Pt/C catalysts due to its higher selectivity towards the hydrogen peroxide oxidation reaction (HPOR) and the lesser H 2 O 2 disproportionation reaction (HPDR). Increasing the Co-N-C catalyst loading and PEM thickness can effectively inhibit the H 2 O 2 crossover and improve the H 2 O 2 utilization. On the other hand, the portion of the HPDR and the ohmic loss increase with the catalyst loading and PEM thickness, respectively. A maximum H 2 O 2 utilization of over 98% can be achieved by balancing these factors. These results provide valuable guides to the catalyst design and device optimization for efficient energy storage systems based on the electrochemical H 2 O 2 -H 2 cycle. A proton exchange membrane H 2 O 2 electrolyzer for maximization of hydrogen peroxide utilization.</abstract><doi>10.1039/d3gc03200k</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1463-9262
ispartof Green chemistry : an international journal and green chemistry resource : GC, 2024-07, Vol.26 (13), p.7769-7778
issn 1463-9262
1463-9270
language
recordid cdi_rsc_primary_d3gc03200k
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
title Maximization of hydrogen peroxide utilization in a proton exchange membrane HO electrolyzer for efficient power-to-hydrogen conversion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A06%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximization%20of%20hydrogen%20peroxide%20utilization%20in%20a%20proton%20exchange%20membrane%20HO%20electrolyzer%20for%20efficient%20power-to-hydrogen%20conversion&rft.jtitle=Green%20chemistry%20:%20an%20international%20journal%20and%20green%20chemistry%20resource%20:%20GC&rft.au=Yang,%20Jie&rft.date=2024-07-01&rft.volume=26&rft.issue=13&rft.spage=7769&rft.epage=7778&rft.pages=7769-7778&rft.issn=1463-9262&rft.eissn=1463-9270&rft_id=info:doi/10.1039/d3gc03200k&rft_dat=%3Crsc%3Ed3gc03200k%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true