Tuning the product selectivity of CO/HO co-electrolysis using CeO-modified proton-conducting electrolysis cells

Co-electrolysis of CO 2 and H 2 O to produce fuels using proton-conducting electrolysis cells (PCECs) is a promising technology for effective CO 2 utilization. The direct production of hydrocarbon fuels using PCECs, nevertheless, remains challenging, and the mechanism of CO 2 hydrogenation during el...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental science 2023-07, Vol.16 (7), p.3137-3145
Hauptverfasser: Ye, Yongjian, Lee, WonJun, Pan, Junxian, Sun, Xiang, Zhou, Mengzhen, Li, Jiahui, Zhang, Nian, Han, Jeong Woo, Chen, Yan
Format: Artikel
Sprache:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3145
container_issue 7
container_start_page 3137
container_title Energy & environmental science
container_volume 16
creator Ye, Yongjian
Lee, WonJun
Pan, Junxian
Sun, Xiang
Zhou, Mengzhen
Li, Jiahui
Zhang, Nian
Han, Jeong Woo
Chen, Yan
description Co-electrolysis of CO 2 and H 2 O to produce fuels using proton-conducting electrolysis cells (PCECs) is a promising technology for effective CO 2 utilization. The direct production of hydrocarbon fuels using PCECs, nevertheless, remains challenging, and the mechanism of CO 2 hydrogenation during electrolysis is still unclear. Here, we demonstrate surface engineering as an effective strategy for promoting the CO 2 /H 2 O co-electrolysis to produce CH 4 using PCECs. A thin CeO 2 layer is impregnated selectively onto the BaCe 0.7 Zr 0.1 Y 0.1 Yb 0.1 O 3− δ (BZCYYb) surface of a Ni-BZCYYb fuel electrode. The PCEC with a CeO 2 -modified electrode exhibited more than 3 times CH 4 selectivity at 550 °C and 1250 mA cm −2 than the cell with a pristine electrode. The combination of advanced spectroscopic techniques and density functional theory calculations demonstrates that the decorated CeO 2 modulates the adsorption of reactants and facilitates proton transfer for the hydrogenation process, leading to accelerated CH 4 production. The result provides critical insight into the rational design of high-performance catalysts for other high temperature electrochemical devices. This work demonstrates surface engineering as an effective strategy to modulate the surface adsorption characteristics of reaction intermediates, hence promoting CO 2 /H 2 O co-electrolysis to produce CH 4 using PCECs.
doi_str_mv 10.1039/d3ee01468a
format Article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_d3ee01468a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d3ee01468a</sourcerecordid><originalsourceid>FETCH-rsc_primary_d3ee01468a3</originalsourceid><addsrcrecordid>eNqFjz0LwjAYhIMoWD8WdyF_IDb9tnNR3Lp0LyV9q5G0KXlTof9eKoo4Od1xx3NwhOw8fvB4kLp1AMC9MD5WM-J4SRSyKOHx_OPj1F-SFeKd89jnSeoQXQyd7K7U3oD2RteDsBRBgbDyIe1IdUOz3L3kVGj2io1WI0qkA05YBjlrdS0bCfXEW90xobtpZqp_CAFK4YYsmkohbN-6JvvzqcguzKAoeyPbyozl90Xwr38CiJRM8w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Tuning the product selectivity of CO/HO co-electrolysis using CeO-modified proton-conducting electrolysis cells</title><source>Royal Society of Chemistry E-Journals</source><creator>Ye, Yongjian ; Lee, WonJun ; Pan, Junxian ; Sun, Xiang ; Zhou, Mengzhen ; Li, Jiahui ; Zhang, Nian ; Han, Jeong Woo ; Chen, Yan</creator><creatorcontrib>Ye, Yongjian ; Lee, WonJun ; Pan, Junxian ; Sun, Xiang ; Zhou, Mengzhen ; Li, Jiahui ; Zhang, Nian ; Han, Jeong Woo ; Chen, Yan</creatorcontrib><description>Co-electrolysis of CO 2 and H 2 O to produce fuels using proton-conducting electrolysis cells (PCECs) is a promising technology for effective CO 2 utilization. The direct production of hydrocarbon fuels using PCECs, nevertheless, remains challenging, and the mechanism of CO 2 hydrogenation during electrolysis is still unclear. Here, we demonstrate surface engineering as an effective strategy for promoting the CO 2 /H 2 O co-electrolysis to produce CH 4 using PCECs. A thin CeO 2 layer is impregnated selectively onto the BaCe 0.7 Zr 0.1 Y 0.1 Yb 0.1 O 3− δ (BZCYYb) surface of a Ni-BZCYYb fuel electrode. The PCEC with a CeO 2 -modified electrode exhibited more than 3 times CH 4 selectivity at 550 °C and 1250 mA cm −2 than the cell with a pristine electrode. The combination of advanced spectroscopic techniques and density functional theory calculations demonstrates that the decorated CeO 2 modulates the adsorption of reactants and facilitates proton transfer for the hydrogenation process, leading to accelerated CH 4 production. The result provides critical insight into the rational design of high-performance catalysts for other high temperature electrochemical devices. This work demonstrates surface engineering as an effective strategy to modulate the surface adsorption characteristics of reaction intermediates, hence promoting CO 2 /H 2 O co-electrolysis to produce CH 4 using PCECs.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/d3ee01468a</identifier><ispartof>Energy &amp; environmental science, 2023-07, Vol.16 (7), p.3137-3145</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Ye, Yongjian</creatorcontrib><creatorcontrib>Lee, WonJun</creatorcontrib><creatorcontrib>Pan, Junxian</creatorcontrib><creatorcontrib>Sun, Xiang</creatorcontrib><creatorcontrib>Zhou, Mengzhen</creatorcontrib><creatorcontrib>Li, Jiahui</creatorcontrib><creatorcontrib>Zhang, Nian</creatorcontrib><creatorcontrib>Han, Jeong Woo</creatorcontrib><creatorcontrib>Chen, Yan</creatorcontrib><title>Tuning the product selectivity of CO/HO co-electrolysis using CeO-modified proton-conducting electrolysis cells</title><title>Energy &amp; environmental science</title><description>Co-electrolysis of CO 2 and H 2 O to produce fuels using proton-conducting electrolysis cells (PCECs) is a promising technology for effective CO 2 utilization. The direct production of hydrocarbon fuels using PCECs, nevertheless, remains challenging, and the mechanism of CO 2 hydrogenation during electrolysis is still unclear. Here, we demonstrate surface engineering as an effective strategy for promoting the CO 2 /H 2 O co-electrolysis to produce CH 4 using PCECs. A thin CeO 2 layer is impregnated selectively onto the BaCe 0.7 Zr 0.1 Y 0.1 Yb 0.1 O 3− δ (BZCYYb) surface of a Ni-BZCYYb fuel electrode. The PCEC with a CeO 2 -modified electrode exhibited more than 3 times CH 4 selectivity at 550 °C and 1250 mA cm −2 than the cell with a pristine electrode. The combination of advanced spectroscopic techniques and density functional theory calculations demonstrates that the decorated CeO 2 modulates the adsorption of reactants and facilitates proton transfer for the hydrogenation process, leading to accelerated CH 4 production. The result provides critical insight into the rational design of high-performance catalysts for other high temperature electrochemical devices. This work demonstrates surface engineering as an effective strategy to modulate the surface adsorption characteristics of reaction intermediates, hence promoting CO 2 /H 2 O co-electrolysis to produce CH 4 using PCECs.</description><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFjz0LwjAYhIMoWD8WdyF_IDb9tnNR3Lp0LyV9q5G0KXlTof9eKoo4Od1xx3NwhOw8fvB4kLp1AMC9MD5WM-J4SRSyKOHx_OPj1F-SFeKd89jnSeoQXQyd7K7U3oD2RteDsBRBgbDyIe1IdUOz3L3kVGj2io1WI0qkA05YBjlrdS0bCfXEW90xobtpZqp_CAFK4YYsmkohbN-6JvvzqcguzKAoeyPbyozl90Xwr38CiJRM8w</recordid><startdate>20230712</startdate><enddate>20230712</enddate><creator>Ye, Yongjian</creator><creator>Lee, WonJun</creator><creator>Pan, Junxian</creator><creator>Sun, Xiang</creator><creator>Zhou, Mengzhen</creator><creator>Li, Jiahui</creator><creator>Zhang, Nian</creator><creator>Han, Jeong Woo</creator><creator>Chen, Yan</creator><scope/></search><sort><creationdate>20230712</creationdate><title>Tuning the product selectivity of CO/HO co-electrolysis using CeO-modified proton-conducting electrolysis cells</title><author>Ye, Yongjian ; Lee, WonJun ; Pan, Junxian ; Sun, Xiang ; Zhou, Mengzhen ; Li, Jiahui ; Zhang, Nian ; Han, Jeong Woo ; Chen, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_d3ee01468a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Yongjian</creatorcontrib><creatorcontrib>Lee, WonJun</creatorcontrib><creatorcontrib>Pan, Junxian</creatorcontrib><creatorcontrib>Sun, Xiang</creatorcontrib><creatorcontrib>Zhou, Mengzhen</creatorcontrib><creatorcontrib>Li, Jiahui</creatorcontrib><creatorcontrib>Zhang, Nian</creatorcontrib><creatorcontrib>Han, Jeong Woo</creatorcontrib><creatorcontrib>Chen, Yan</creatorcontrib><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Yongjian</au><au>Lee, WonJun</au><au>Pan, Junxian</au><au>Sun, Xiang</au><au>Zhou, Mengzhen</au><au>Li, Jiahui</au><au>Zhang, Nian</au><au>Han, Jeong Woo</au><au>Chen, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tuning the product selectivity of CO/HO co-electrolysis using CeO-modified proton-conducting electrolysis cells</atitle><jtitle>Energy &amp; environmental science</jtitle><date>2023-07-12</date><risdate>2023</risdate><volume>16</volume><issue>7</issue><spage>3137</spage><epage>3145</epage><pages>3137-3145</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Co-electrolysis of CO 2 and H 2 O to produce fuels using proton-conducting electrolysis cells (PCECs) is a promising technology for effective CO 2 utilization. The direct production of hydrocarbon fuels using PCECs, nevertheless, remains challenging, and the mechanism of CO 2 hydrogenation during electrolysis is still unclear. Here, we demonstrate surface engineering as an effective strategy for promoting the CO 2 /H 2 O co-electrolysis to produce CH 4 using PCECs. A thin CeO 2 layer is impregnated selectively onto the BaCe 0.7 Zr 0.1 Y 0.1 Yb 0.1 O 3− δ (BZCYYb) surface of a Ni-BZCYYb fuel electrode. The PCEC with a CeO 2 -modified electrode exhibited more than 3 times CH 4 selectivity at 550 °C and 1250 mA cm −2 than the cell with a pristine electrode. The combination of advanced spectroscopic techniques and density functional theory calculations demonstrates that the decorated CeO 2 modulates the adsorption of reactants and facilitates proton transfer for the hydrogenation process, leading to accelerated CH 4 production. The result provides critical insight into the rational design of high-performance catalysts for other high temperature electrochemical devices. This work demonstrates surface engineering as an effective strategy to modulate the surface adsorption characteristics of reaction intermediates, hence promoting CO 2 /H 2 O co-electrolysis to produce CH 4 using PCECs.</abstract><doi>10.1039/d3ee01468a</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2023-07, Vol.16 (7), p.3137-3145
issn 1754-5692
1754-5706
language
recordid cdi_rsc_primary_d3ee01468a
source Royal Society of Chemistry E-Journals
title Tuning the product selectivity of CO/HO co-electrolysis using CeO-modified proton-conducting electrolysis cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T17%3A58%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tuning%20the%20product%20selectivity%20of%20CO/HO%20co-electrolysis%20using%20CeO-modified%20proton-conducting%20electrolysis%20cells&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Ye,%20Yongjian&rft.date=2023-07-12&rft.volume=16&rft.issue=7&rft.spage=3137&rft.epage=3145&rft.pages=3137-3145&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/d3ee01468a&rft_dat=%3Crsc%3Ed3ee01468a%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true