Nanotubular FeO and MnO with hierarchical porosity as high-performance anode materials for lithium-ion batteries
Developing eco-friendly and low-cost advanced anode materials, such as Fe 2 O 3 and Mn 3 O 4 , is fundamental to improve the electrochemical performance of lithium-ion batteries (LIBs). The rational engineering of the microstructure of Fe 2 O 3 and Mn 3 O 4 to endow it with one-dimensionally and hie...
Gespeichert in:
Veröffentlicht in: | Dalton transactions : an international journal of inorganic chemistry 2023-12, Vol.52 (48), p.18194-1825 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1825 |
---|---|
container_issue | 48 |
container_start_page | 18194 |
container_title | Dalton transactions : an international journal of inorganic chemistry |
container_volume | 52 |
creator | Li, Zhen Yang, Man Geng, Fengting Zhang, Dashuai Zhang, Yongzheng Zhang, Xiuling Pang, Xuliang Geng, Longlong |
description | Developing eco-friendly and low-cost advanced anode materials, such as Fe
2
O
3
and Mn
3
O
4
, is fundamental to improve the electrochemical performance of lithium-ion batteries (LIBs). The rational engineering of the microstructure of Fe
2
O
3
and Mn
3
O
4
to endow it with one-dimensionally and hierarchically porous architecture is a feasible way to further improve and optimize the electrochemical performance of the anode materials. Herein, we demonstrate a facile strategy to prepare nanotubular Fe
2
O
3
and Mn
3
O
4
as advanced anode materials for high-performance LIBs. By combining the merits of the one-dimensionally nanotubular morphology and hierarchically porous structure, limitations in the lithiation activity of Mn
3
O
4
and Fe
2
O
3
anode materials, such as low electrical conductivity, large volume expansion, and sluggish lithium-ion diffusion within the materials, have been effectively overcome. When used as anode materials, t-Fe
2
O
3
and t-Mn
3
O
4
exhibited outstanding electrochemical performances, including a high reversible discharge capacity (859.7 and 901.4 mA h g
−1
for t-Fe
2
O
3
and t-Mn
3
O
4
, respectively), excellent rate performance, and ultra-stable cycling stability. Such superior electrochemical performances proved the exceptional potential of the materials for the real-world application in LIBs.
A facile method was developed to prepare nanotubular and hierarchically porous Fe
2
O
3
and Mn
3
O
4
, which exhibited a significantly enhanced electrochemical performance for LIBs. |
doi_str_mv | 10.1039/d3dt03354f |
format | Article |
fullrecord | <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_d3dt03354f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d3dt03354f</sourcerecordid><originalsourceid>FETCH-rsc_primary_d3dt03354f3</originalsourceid><addsrcrecordid>eNqFjz8LwjAUxIMo-HdxF94XqKZJVZxFcdEu7vJsUxtpk_KSIn57I4iOTnfwuzs4xqYxn8dcbha5zD2XcpkUHTaIk_U62giZdL9erPps6NydcyH4UgxYc0JjfXttKyTYqxTQ5HA0KTy0L6HUipCyUmdYQWPJOu2fgC6AWxk1igpLNZpMhZrNFdToFWmsHAQAVZjQbR1pa-CK_o2UG7NeEQJq8tERm-135-0hIpddGtI10vPyuyH_8RfFmE05</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nanotubular FeO and MnO with hierarchical porosity as high-performance anode materials for lithium-ion batteries</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Li, Zhen ; Yang, Man ; Geng, Fengting ; Zhang, Dashuai ; Zhang, Yongzheng ; Zhang, Xiuling ; Pang, Xuliang ; Geng, Longlong</creator><creatorcontrib>Li, Zhen ; Yang, Man ; Geng, Fengting ; Zhang, Dashuai ; Zhang, Yongzheng ; Zhang, Xiuling ; Pang, Xuliang ; Geng, Longlong</creatorcontrib><description>Developing eco-friendly and low-cost advanced anode materials, such as Fe
2
O
3
and Mn
3
O
4
, is fundamental to improve the electrochemical performance of lithium-ion batteries (LIBs). The rational engineering of the microstructure of Fe
2
O
3
and Mn
3
O
4
to endow it with one-dimensionally and hierarchically porous architecture is a feasible way to further improve and optimize the electrochemical performance of the anode materials. Herein, we demonstrate a facile strategy to prepare nanotubular Fe
2
O
3
and Mn
3
O
4
as advanced anode materials for high-performance LIBs. By combining the merits of the one-dimensionally nanotubular morphology and hierarchically porous structure, limitations in the lithiation activity of Mn
3
O
4
and Fe
2
O
3
anode materials, such as low electrical conductivity, large volume expansion, and sluggish lithium-ion diffusion within the materials, have been effectively overcome. When used as anode materials, t-Fe
2
O
3
and t-Mn
3
O
4
exhibited outstanding electrochemical performances, including a high reversible discharge capacity (859.7 and 901.4 mA h g
−1
for t-Fe
2
O
3
and t-Mn
3
O
4
, respectively), excellent rate performance, and ultra-stable cycling stability. Such superior electrochemical performances proved the exceptional potential of the materials for the real-world application in LIBs.
A facile method was developed to prepare nanotubular and hierarchically porous Fe
2
O
3
and Mn
3
O
4
, which exhibited a significantly enhanced electrochemical performance for LIBs.</description><identifier>ISSN: 1477-9226</identifier><identifier>EISSN: 1477-9234</identifier><identifier>DOI: 10.1039/d3dt03354f</identifier><ispartof>Dalton transactions : an international journal of inorganic chemistry, 2023-12, Vol.52 (48), p.18194-1825</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Li, Zhen</creatorcontrib><creatorcontrib>Yang, Man</creatorcontrib><creatorcontrib>Geng, Fengting</creatorcontrib><creatorcontrib>Zhang, Dashuai</creatorcontrib><creatorcontrib>Zhang, Yongzheng</creatorcontrib><creatorcontrib>Zhang, Xiuling</creatorcontrib><creatorcontrib>Pang, Xuliang</creatorcontrib><creatorcontrib>Geng, Longlong</creatorcontrib><title>Nanotubular FeO and MnO with hierarchical porosity as high-performance anode materials for lithium-ion batteries</title><title>Dalton transactions : an international journal of inorganic chemistry</title><description>Developing eco-friendly and low-cost advanced anode materials, such as Fe
2
O
3
and Mn
3
O
4
, is fundamental to improve the electrochemical performance of lithium-ion batteries (LIBs). The rational engineering of the microstructure of Fe
2
O
3
and Mn
3
O
4
to endow it with one-dimensionally and hierarchically porous architecture is a feasible way to further improve and optimize the electrochemical performance of the anode materials. Herein, we demonstrate a facile strategy to prepare nanotubular Fe
2
O
3
and Mn
3
O
4
as advanced anode materials for high-performance LIBs. By combining the merits of the one-dimensionally nanotubular morphology and hierarchically porous structure, limitations in the lithiation activity of Mn
3
O
4
and Fe
2
O
3
anode materials, such as low electrical conductivity, large volume expansion, and sluggish lithium-ion diffusion within the materials, have been effectively overcome. When used as anode materials, t-Fe
2
O
3
and t-Mn
3
O
4
exhibited outstanding electrochemical performances, including a high reversible discharge capacity (859.7 and 901.4 mA h g
−1
for t-Fe
2
O
3
and t-Mn
3
O
4
, respectively), excellent rate performance, and ultra-stable cycling stability. Such superior electrochemical performances proved the exceptional potential of the materials for the real-world application in LIBs.
A facile method was developed to prepare nanotubular and hierarchically porous Fe
2
O
3
and Mn
3
O
4
, which exhibited a significantly enhanced electrochemical performance for LIBs.</description><issn>1477-9226</issn><issn>1477-9234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFjz8LwjAUxIMo-HdxF94XqKZJVZxFcdEu7vJsUxtpk_KSIn57I4iOTnfwuzs4xqYxn8dcbha5zD2XcpkUHTaIk_U62giZdL9erPps6NydcyH4UgxYc0JjfXttKyTYqxTQ5HA0KTy0L6HUipCyUmdYQWPJOu2fgC6AWxk1igpLNZpMhZrNFdToFWmsHAQAVZjQbR1pa-CK_o2UG7NeEQJq8tERm-135-0hIpddGtI10vPyuyH_8RfFmE05</recordid><startdate>20231212</startdate><enddate>20231212</enddate><creator>Li, Zhen</creator><creator>Yang, Man</creator><creator>Geng, Fengting</creator><creator>Zhang, Dashuai</creator><creator>Zhang, Yongzheng</creator><creator>Zhang, Xiuling</creator><creator>Pang, Xuliang</creator><creator>Geng, Longlong</creator><scope/></search><sort><creationdate>20231212</creationdate><title>Nanotubular FeO and MnO with hierarchical porosity as high-performance anode materials for lithium-ion batteries</title><author>Li, Zhen ; Yang, Man ; Geng, Fengting ; Zhang, Dashuai ; Zhang, Yongzheng ; Zhang, Xiuling ; Pang, Xuliang ; Geng, Longlong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_d3dt03354f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhen</creatorcontrib><creatorcontrib>Yang, Man</creatorcontrib><creatorcontrib>Geng, Fengting</creatorcontrib><creatorcontrib>Zhang, Dashuai</creatorcontrib><creatorcontrib>Zhang, Yongzheng</creatorcontrib><creatorcontrib>Zhang, Xiuling</creatorcontrib><creatorcontrib>Pang, Xuliang</creatorcontrib><creatorcontrib>Geng, Longlong</creatorcontrib><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhen</au><au>Yang, Man</au><au>Geng, Fengting</au><au>Zhang, Dashuai</au><au>Zhang, Yongzheng</au><au>Zhang, Xiuling</au><au>Pang, Xuliang</au><au>Geng, Longlong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanotubular FeO and MnO with hierarchical porosity as high-performance anode materials for lithium-ion batteries</atitle><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle><date>2023-12-12</date><risdate>2023</risdate><volume>52</volume><issue>48</issue><spage>18194</spage><epage>1825</epage><pages>18194-1825</pages><issn>1477-9226</issn><eissn>1477-9234</eissn><abstract>Developing eco-friendly and low-cost advanced anode materials, such as Fe
2
O
3
and Mn
3
O
4
, is fundamental to improve the electrochemical performance of lithium-ion batteries (LIBs). The rational engineering of the microstructure of Fe
2
O
3
and Mn
3
O
4
to endow it with one-dimensionally and hierarchically porous architecture is a feasible way to further improve and optimize the electrochemical performance of the anode materials. Herein, we demonstrate a facile strategy to prepare nanotubular Fe
2
O
3
and Mn
3
O
4
as advanced anode materials for high-performance LIBs. By combining the merits of the one-dimensionally nanotubular morphology and hierarchically porous structure, limitations in the lithiation activity of Mn
3
O
4
and Fe
2
O
3
anode materials, such as low electrical conductivity, large volume expansion, and sluggish lithium-ion diffusion within the materials, have been effectively overcome. When used as anode materials, t-Fe
2
O
3
and t-Mn
3
O
4
exhibited outstanding electrochemical performances, including a high reversible discharge capacity (859.7 and 901.4 mA h g
−1
for t-Fe
2
O
3
and t-Mn
3
O
4
, respectively), excellent rate performance, and ultra-stable cycling stability. Such superior electrochemical performances proved the exceptional potential of the materials for the real-world application in LIBs.
A facile method was developed to prepare nanotubular and hierarchically porous Fe
2
O
3
and Mn
3
O
4
, which exhibited a significantly enhanced electrochemical performance for LIBs.</abstract><doi>10.1039/d3dt03354f</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1477-9226 |
ispartof | Dalton transactions : an international journal of inorganic chemistry, 2023-12, Vol.52 (48), p.18194-1825 |
issn | 1477-9226 1477-9234 |
language | |
recordid | cdi_rsc_primary_d3dt03354f |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
title | Nanotubular FeO and MnO with hierarchical porosity as high-performance anode materials for lithium-ion batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A18%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanotubular%20FeO%20and%20MnO%20with%20hierarchical%20porosity%20as%20high-performance%20anode%20materials%20for%20lithium-ion%20batteries&rft.jtitle=Dalton%20transactions%20:%20an%20international%20journal%20of%20inorganic%20chemistry&rft.au=Li,%20Zhen&rft.date=2023-12-12&rft.volume=52&rft.issue=48&rft.spage=18194&rft.epage=1825&rft.pages=18194-1825&rft.issn=1477-9226&rft.eissn=1477-9234&rft_id=info:doi/10.1039/d3dt03354f&rft_dat=%3Crsc%3Ed3dt03354f%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |