CO activation dominating the dry reforming of methane catalyzed by Rh(111) based on multiscale modelling

The dry reforming of methane (DRM) converts two greenhouse gases (CH 4 and CO 2 ) to syngas (CO/H 2 ). Rh-based catalysts are among the most active DRM catalysts, but they still need to be fully understood at the atomic level. In this work, we evaluated the Rh(111)-catalyzed DRM via periodic density...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysis science & technology 2023-12, Vol.13 (24), p.7162-7171
Hauptverfasser: Díaz López, Estefanía, Comas-Vives, Aleix
Format: Artikel
Sprache:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7171
container_issue 24
container_start_page 7162
container_title Catalysis science & technology
container_volume 13
creator Díaz López, Estefanía
Comas-Vives, Aleix
description The dry reforming of methane (DRM) converts two greenhouse gases (CH 4 and CO 2 ) to syngas (CO/H 2 ). Rh-based catalysts are among the most active DRM catalysts, but they still need to be fully understood at the atomic level. In this work, we evaluated the Rh(111)-catalyzed DRM via periodic density functional theory and kinetic Monte Carlo (kMC) simulations, accounting for lateral interactions. The kinetic model consisted of 38 elementary reactions, including adsorption, desorption, and surface chemical reactions. The reaction network considered both the formation of the DRM products and the competitive reverse water-gas shift reaction. kMC simulations indicated direct CO 2 activation takes place, yielding CO* and O*. The CH oxidation path (CH* + O*) was the preferred route to obtain the second CO molecule, and the water formation minimally affected the final H 2 /CO ratio. The catalytic system displayed Arrhenius behavior at different temperatures with an apparent activation energy of 53 kJ mol −1 . The degree of rate control analysis identified CO 2 activation as the dominant step in Rh(111)-catalyzed DRM, with no evidence of catalyst deactivation. Our study underscores the utility of multiscale modeling for a comprehensive understanding of heterogeneous catalysts from a bottom-up approach. Rh(111)-catalyzed dry reforming of methane (DRM) was studied via a multiscale modeling approach, identifying CO 2 activation as the rate-determining step, emphasizing the approach's usefulness in providing catalytic understanding.
doi_str_mv 10.1039/d3cy01546g
format Article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_d3cy01546g</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d3cy01546g</sourcerecordid><originalsourceid>FETCH-rsc_primary_d3cy01546g3</originalsourceid><addsrcrecordid>eNqFT8FqAjEUDEWhonvpvfCO9qBNdrO2e15avAnSuzyT7G5KsilJFOLXN4WiR-cywwwzMIQ8MbpmtGpeZSUSZTXf9A9kVlLOV_xtwyZXXVePpAjhm2bwhtH3ckaGdgcooj5j1G4E6awesxx7iIMC6RN41Tlv_xzXgVVxwFGBwIgmXZSEY4L9sGSMvcARQzbyij2ZqINAo8A6qYzJ7QWZdmiCKv55Tp4_P77a7coHcfjx2qJPh9uD6l7-C0SiSZg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>CO activation dominating the dry reforming of methane catalyzed by Rh(111) based on multiscale modelling</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Díaz López, Estefanía ; Comas-Vives, Aleix</creator><creatorcontrib>Díaz López, Estefanía ; Comas-Vives, Aleix</creatorcontrib><description>The dry reforming of methane (DRM) converts two greenhouse gases (CH 4 and CO 2 ) to syngas (CO/H 2 ). Rh-based catalysts are among the most active DRM catalysts, but they still need to be fully understood at the atomic level. In this work, we evaluated the Rh(111)-catalyzed DRM via periodic density functional theory and kinetic Monte Carlo (kMC) simulations, accounting for lateral interactions. The kinetic model consisted of 38 elementary reactions, including adsorption, desorption, and surface chemical reactions. The reaction network considered both the formation of the DRM products and the competitive reverse water-gas shift reaction. kMC simulations indicated direct CO 2 activation takes place, yielding CO* and O*. The CH oxidation path (CH* + O*) was the preferred route to obtain the second CO molecule, and the water formation minimally affected the final H 2 /CO ratio. The catalytic system displayed Arrhenius behavior at different temperatures with an apparent activation energy of 53 kJ mol −1 . The degree of rate control analysis identified CO 2 activation as the dominant step in Rh(111)-catalyzed DRM, with no evidence of catalyst deactivation. Our study underscores the utility of multiscale modeling for a comprehensive understanding of heterogeneous catalysts from a bottom-up approach. Rh(111)-catalyzed dry reforming of methane (DRM) was studied via a multiscale modeling approach, identifying CO 2 activation as the rate-determining step, emphasizing the approach's usefulness in providing catalytic understanding.</description><identifier>ISSN: 2044-4753</identifier><identifier>EISSN: 2044-4761</identifier><identifier>DOI: 10.1039/d3cy01546g</identifier><ispartof>Catalysis science &amp; technology, 2023-12, Vol.13 (24), p.7162-7171</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Díaz López, Estefanía</creatorcontrib><creatorcontrib>Comas-Vives, Aleix</creatorcontrib><title>CO activation dominating the dry reforming of methane catalyzed by Rh(111) based on multiscale modelling</title><title>Catalysis science &amp; technology</title><description>The dry reforming of methane (DRM) converts two greenhouse gases (CH 4 and CO 2 ) to syngas (CO/H 2 ). Rh-based catalysts are among the most active DRM catalysts, but they still need to be fully understood at the atomic level. In this work, we evaluated the Rh(111)-catalyzed DRM via periodic density functional theory and kinetic Monte Carlo (kMC) simulations, accounting for lateral interactions. The kinetic model consisted of 38 elementary reactions, including adsorption, desorption, and surface chemical reactions. The reaction network considered both the formation of the DRM products and the competitive reverse water-gas shift reaction. kMC simulations indicated direct CO 2 activation takes place, yielding CO* and O*. The CH oxidation path (CH* + O*) was the preferred route to obtain the second CO molecule, and the water formation minimally affected the final H 2 /CO ratio. The catalytic system displayed Arrhenius behavior at different temperatures with an apparent activation energy of 53 kJ mol −1 . The degree of rate control analysis identified CO 2 activation as the dominant step in Rh(111)-catalyzed DRM, with no evidence of catalyst deactivation. Our study underscores the utility of multiscale modeling for a comprehensive understanding of heterogeneous catalysts from a bottom-up approach. Rh(111)-catalyzed dry reforming of methane (DRM) was studied via a multiscale modeling approach, identifying CO 2 activation as the rate-determining step, emphasizing the approach's usefulness in providing catalytic understanding.</description><issn>2044-4753</issn><issn>2044-4761</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFT8FqAjEUDEWhonvpvfCO9qBNdrO2e15avAnSuzyT7G5KsilJFOLXN4WiR-cywwwzMIQ8MbpmtGpeZSUSZTXf9A9kVlLOV_xtwyZXXVePpAjhm2bwhtH3ckaGdgcooj5j1G4E6awesxx7iIMC6RN41Tlv_xzXgVVxwFGBwIgmXZSEY4L9sGSMvcARQzbyij2ZqINAo8A6qYzJ7QWZdmiCKv55Tp4_P77a7coHcfjx2qJPh9uD6l7-C0SiSZg</recordid><startdate>20231211</startdate><enddate>20231211</enddate><creator>Díaz López, Estefanía</creator><creator>Comas-Vives, Aleix</creator><scope/></search><sort><creationdate>20231211</creationdate><title>CO activation dominating the dry reforming of methane catalyzed by Rh(111) based on multiscale modelling</title><author>Díaz López, Estefanía ; Comas-Vives, Aleix</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_d3cy01546g3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Díaz López, Estefanía</creatorcontrib><creatorcontrib>Comas-Vives, Aleix</creatorcontrib><jtitle>Catalysis science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Díaz López, Estefanía</au><au>Comas-Vives, Aleix</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CO activation dominating the dry reforming of methane catalyzed by Rh(111) based on multiscale modelling</atitle><jtitle>Catalysis science &amp; technology</jtitle><date>2023-12-11</date><risdate>2023</risdate><volume>13</volume><issue>24</issue><spage>7162</spage><epage>7171</epage><pages>7162-7171</pages><issn>2044-4753</issn><eissn>2044-4761</eissn><abstract>The dry reforming of methane (DRM) converts two greenhouse gases (CH 4 and CO 2 ) to syngas (CO/H 2 ). Rh-based catalysts are among the most active DRM catalysts, but they still need to be fully understood at the atomic level. In this work, we evaluated the Rh(111)-catalyzed DRM via periodic density functional theory and kinetic Monte Carlo (kMC) simulations, accounting for lateral interactions. The kinetic model consisted of 38 elementary reactions, including adsorption, desorption, and surface chemical reactions. The reaction network considered both the formation of the DRM products and the competitive reverse water-gas shift reaction. kMC simulations indicated direct CO 2 activation takes place, yielding CO* and O*. The CH oxidation path (CH* + O*) was the preferred route to obtain the second CO molecule, and the water formation minimally affected the final H 2 /CO ratio. The catalytic system displayed Arrhenius behavior at different temperatures with an apparent activation energy of 53 kJ mol −1 . The degree of rate control analysis identified CO 2 activation as the dominant step in Rh(111)-catalyzed DRM, with no evidence of catalyst deactivation. Our study underscores the utility of multiscale modeling for a comprehensive understanding of heterogeneous catalysts from a bottom-up approach. Rh(111)-catalyzed dry reforming of methane (DRM) was studied via a multiscale modeling approach, identifying CO 2 activation as the rate-determining step, emphasizing the approach's usefulness in providing catalytic understanding.</abstract><doi>10.1039/d3cy01546g</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2044-4753
ispartof Catalysis science & technology, 2023-12, Vol.13 (24), p.7162-7171
issn 2044-4753
2044-4761
language
recordid cdi_rsc_primary_d3cy01546g
source Royal Society Of Chemistry Journals 2008-
title CO activation dominating the dry reforming of methane catalyzed by Rh(111) based on multiscale modelling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T06%3A58%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CO%20activation%20dominating%20the%20dry%20reforming%20of%20methane%20catalyzed%20by%20Rh(111)%20based%20on%20multiscale%20modelling&rft.jtitle=Catalysis%20science%20&%20technology&rft.au=D%C3%ADaz%20L%C3%B3pez,%20Estefan%C3%ADa&rft.date=2023-12-11&rft.volume=13&rft.issue=24&rft.spage=7162&rft.epage=7171&rft.pages=7162-7171&rft.issn=2044-4753&rft.eissn=2044-4761&rft_id=info:doi/10.1039/d3cy01546g&rft_dat=%3Crsc%3Ed3cy01546g%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true