A data-driven high-throughput workflow applied to promoted In-oxide catalysts for CO hydrogenation to methanol

We propose a novel high-throughput workflow, combining DFT-derived atomic scale interaction parameters with experimental data to identify key performance-related descriptors in a CO 2 to methanol reaction, for In-based catalysts. Utilizing advanced machine learning algorithms suitable for small data...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysis science & technology 2023-05, Vol.13 (9), p.2656-2661
Hauptverfasser: Khatamirad, Mohammad, Fako, Edvin, Boscagli, Chiara, Müller, Matthias, Ebert, Fabian, Naumann d'Alnoncourt, Raoul, Schaefer, Ansgar, Schunk, Stephan Andreas, Jevtovikj, Ivana, Rosowski, Frank, De, Sandip
Format: Artikel
Sprache:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2661
container_issue 9
container_start_page 2656
container_title Catalysis science & technology
container_volume 13
creator Khatamirad, Mohammad
Fako, Edvin
Boscagli, Chiara
Müller, Matthias
Ebert, Fabian
Naumann d'Alnoncourt, Raoul
Schaefer, Ansgar
Schunk, Stephan Andreas
Jevtovikj, Ivana
Rosowski, Frank
De, Sandip
description We propose a novel high-throughput workflow, combining DFT-derived atomic scale interaction parameters with experimental data to identify key performance-related descriptors in a CO 2 to methanol reaction, for In-based catalysts. Utilizing advanced machine learning algorithms suitable for small datasets, secondary descriptors with high predictive power for catalytic activity were constructed. These descriptors, which highlight the crucial role of hydroxyl sites, can be applied to designing new materials and to bringing them to the test with high-throughput screening, paving the path for accelerated catalyst design. To facilitate accelerated catalyst design, a combined computation and experimental workflow based on machine learning algorithms is proposed, which detects key performance-related descriptors in a CO 2 to methanol reaction, for In 2 O 3 -based catalysts.
doi_str_mv 10.1039/d3cy00148b
format Article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_d3cy00148b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d3cy00148b</sourcerecordid><originalsourceid>FETCH-rsc_primary_d3cy00148b3</originalsourceid><addsrcrecordid>eNqFj0FLAzEUhIMotGgvvRfeH4gm3VTbo5RKPfXivcRNdpM2mxdeUuv--25B9Ohc5oNhBoaxqRSPUlSrJ1PVvRBSLT9v2HgulOLq5Vne_vKiGrFJzgcxSK2kWM7HLL6C0UVzQ_7LRnC-dbw4wlPr0qnAGenYBDyDTil4a6AgJMIOy8DvkeO3NxbqYSH0uWRokGC9A9cbwtZGXTzGa6ezxemI4YHdNTpkO_nxezZ723yst5xyvU_kO039_u9H9V9-Ac8XTSY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A data-driven high-throughput workflow applied to promoted In-oxide catalysts for CO hydrogenation to methanol</title><source>Royal Society Of Chemistry Journals</source><creator>Khatamirad, Mohammad ; Fako, Edvin ; Boscagli, Chiara ; Müller, Matthias ; Ebert, Fabian ; Naumann d'Alnoncourt, Raoul ; Schaefer, Ansgar ; Schunk, Stephan Andreas ; Jevtovikj, Ivana ; Rosowski, Frank ; De, Sandip</creator><creatorcontrib>Khatamirad, Mohammad ; Fako, Edvin ; Boscagli, Chiara ; Müller, Matthias ; Ebert, Fabian ; Naumann d'Alnoncourt, Raoul ; Schaefer, Ansgar ; Schunk, Stephan Andreas ; Jevtovikj, Ivana ; Rosowski, Frank ; De, Sandip</creatorcontrib><description>We propose a novel high-throughput workflow, combining DFT-derived atomic scale interaction parameters with experimental data to identify key performance-related descriptors in a CO 2 to methanol reaction, for In-based catalysts. Utilizing advanced machine learning algorithms suitable for small datasets, secondary descriptors with high predictive power for catalytic activity were constructed. These descriptors, which highlight the crucial role of hydroxyl sites, can be applied to designing new materials and to bringing them to the test with high-throughput screening, paving the path for accelerated catalyst design. To facilitate accelerated catalyst design, a combined computation and experimental workflow based on machine learning algorithms is proposed, which detects key performance-related descriptors in a CO 2 to methanol reaction, for In 2 O 3 -based catalysts.</description><identifier>ISSN: 2044-4753</identifier><identifier>EISSN: 2044-4761</identifier><identifier>DOI: 10.1039/d3cy00148b</identifier><ispartof>Catalysis science &amp; technology, 2023-05, Vol.13 (9), p.2656-2661</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Khatamirad, Mohammad</creatorcontrib><creatorcontrib>Fako, Edvin</creatorcontrib><creatorcontrib>Boscagli, Chiara</creatorcontrib><creatorcontrib>Müller, Matthias</creatorcontrib><creatorcontrib>Ebert, Fabian</creatorcontrib><creatorcontrib>Naumann d'Alnoncourt, Raoul</creatorcontrib><creatorcontrib>Schaefer, Ansgar</creatorcontrib><creatorcontrib>Schunk, Stephan Andreas</creatorcontrib><creatorcontrib>Jevtovikj, Ivana</creatorcontrib><creatorcontrib>Rosowski, Frank</creatorcontrib><creatorcontrib>De, Sandip</creatorcontrib><title>A data-driven high-throughput workflow applied to promoted In-oxide catalysts for CO hydrogenation to methanol</title><title>Catalysis science &amp; technology</title><description>We propose a novel high-throughput workflow, combining DFT-derived atomic scale interaction parameters with experimental data to identify key performance-related descriptors in a CO 2 to methanol reaction, for In-based catalysts. Utilizing advanced machine learning algorithms suitable for small datasets, secondary descriptors with high predictive power for catalytic activity were constructed. These descriptors, which highlight the crucial role of hydroxyl sites, can be applied to designing new materials and to bringing them to the test with high-throughput screening, paving the path for accelerated catalyst design. To facilitate accelerated catalyst design, a combined computation and experimental workflow based on machine learning algorithms is proposed, which detects key performance-related descriptors in a CO 2 to methanol reaction, for In 2 O 3 -based catalysts.</description><issn>2044-4753</issn><issn>2044-4761</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFj0FLAzEUhIMotGgvvRfeH4gm3VTbo5RKPfXivcRNdpM2mxdeUuv--25B9Ohc5oNhBoaxqRSPUlSrJ1PVvRBSLT9v2HgulOLq5Vne_vKiGrFJzgcxSK2kWM7HLL6C0UVzQ_7LRnC-dbw4wlPr0qnAGenYBDyDTil4a6AgJMIOy8DvkeO3NxbqYSH0uWRokGC9A9cbwtZGXTzGa6ezxemI4YHdNTpkO_nxezZ723yst5xyvU_kO039_u9H9V9-Ac8XTSY</recordid><startdate>20230509</startdate><enddate>20230509</enddate><creator>Khatamirad, Mohammad</creator><creator>Fako, Edvin</creator><creator>Boscagli, Chiara</creator><creator>Müller, Matthias</creator><creator>Ebert, Fabian</creator><creator>Naumann d'Alnoncourt, Raoul</creator><creator>Schaefer, Ansgar</creator><creator>Schunk, Stephan Andreas</creator><creator>Jevtovikj, Ivana</creator><creator>Rosowski, Frank</creator><creator>De, Sandip</creator><scope/></search><sort><creationdate>20230509</creationdate><title>A data-driven high-throughput workflow applied to promoted In-oxide catalysts for CO hydrogenation to methanol</title><author>Khatamirad, Mohammad ; Fako, Edvin ; Boscagli, Chiara ; Müller, Matthias ; Ebert, Fabian ; Naumann d'Alnoncourt, Raoul ; Schaefer, Ansgar ; Schunk, Stephan Andreas ; Jevtovikj, Ivana ; Rosowski, Frank ; De, Sandip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_d3cy00148b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khatamirad, Mohammad</creatorcontrib><creatorcontrib>Fako, Edvin</creatorcontrib><creatorcontrib>Boscagli, Chiara</creatorcontrib><creatorcontrib>Müller, Matthias</creatorcontrib><creatorcontrib>Ebert, Fabian</creatorcontrib><creatorcontrib>Naumann d'Alnoncourt, Raoul</creatorcontrib><creatorcontrib>Schaefer, Ansgar</creatorcontrib><creatorcontrib>Schunk, Stephan Andreas</creatorcontrib><creatorcontrib>Jevtovikj, Ivana</creatorcontrib><creatorcontrib>Rosowski, Frank</creatorcontrib><creatorcontrib>De, Sandip</creatorcontrib><jtitle>Catalysis science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khatamirad, Mohammad</au><au>Fako, Edvin</au><au>Boscagli, Chiara</au><au>Müller, Matthias</au><au>Ebert, Fabian</au><au>Naumann d'Alnoncourt, Raoul</au><au>Schaefer, Ansgar</au><au>Schunk, Stephan Andreas</au><au>Jevtovikj, Ivana</au><au>Rosowski, Frank</au><au>De, Sandip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A data-driven high-throughput workflow applied to promoted In-oxide catalysts for CO hydrogenation to methanol</atitle><jtitle>Catalysis science &amp; technology</jtitle><date>2023-05-09</date><risdate>2023</risdate><volume>13</volume><issue>9</issue><spage>2656</spage><epage>2661</epage><pages>2656-2661</pages><issn>2044-4753</issn><eissn>2044-4761</eissn><abstract>We propose a novel high-throughput workflow, combining DFT-derived atomic scale interaction parameters with experimental data to identify key performance-related descriptors in a CO 2 to methanol reaction, for In-based catalysts. Utilizing advanced machine learning algorithms suitable for small datasets, secondary descriptors with high predictive power for catalytic activity were constructed. These descriptors, which highlight the crucial role of hydroxyl sites, can be applied to designing new materials and to bringing them to the test with high-throughput screening, paving the path for accelerated catalyst design. To facilitate accelerated catalyst design, a combined computation and experimental workflow based on machine learning algorithms is proposed, which detects key performance-related descriptors in a CO 2 to methanol reaction, for In 2 O 3 -based catalysts.</abstract><doi>10.1039/d3cy00148b</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2044-4753
ispartof Catalysis science & technology, 2023-05, Vol.13 (9), p.2656-2661
issn 2044-4753
2044-4761
language
recordid cdi_rsc_primary_d3cy00148b
source Royal Society Of Chemistry Journals
title A data-driven high-throughput workflow applied to promoted In-oxide catalysts for CO hydrogenation to methanol
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A31%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20data-driven%20high-throughput%20workflow%20applied%20to%20promoted%20In-oxide%20catalysts%20for%20CO%20hydrogenation%20to%20methanol&rft.jtitle=Catalysis%20science%20&%20technology&rft.au=Khatamirad,%20Mohammad&rft.date=2023-05-09&rft.volume=13&rft.issue=9&rft.spage=2656&rft.epage=2661&rft.pages=2656-2661&rft.issn=2044-4753&rft.eissn=2044-4761&rft_id=info:doi/10.1039/d3cy00148b&rft_dat=%3Crsc%3Ed3cy00148b%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true