A data-driven high-throughput workflow applied to promoted In-oxide catalysts for CO hydrogenation to methanol
We propose a novel high-throughput workflow, combining DFT-derived atomic scale interaction parameters with experimental data to identify key performance-related descriptors in a CO 2 to methanol reaction, for In-based catalysts. Utilizing advanced machine learning algorithms suitable for small data...
Gespeichert in:
Veröffentlicht in: | Catalysis science & technology 2023-05, Vol.13 (9), p.2656-2661 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2661 |
---|---|
container_issue | 9 |
container_start_page | 2656 |
container_title | Catalysis science & technology |
container_volume | 13 |
creator | Khatamirad, Mohammad Fako, Edvin Boscagli, Chiara Müller, Matthias Ebert, Fabian Naumann d'Alnoncourt, Raoul Schaefer, Ansgar Schunk, Stephan Andreas Jevtovikj, Ivana Rosowski, Frank De, Sandip |
description | We propose a novel high-throughput workflow, combining DFT-derived atomic scale interaction parameters with experimental data to identify key performance-related descriptors in a CO
2
to methanol reaction, for In-based catalysts. Utilizing advanced machine learning algorithms suitable for small datasets, secondary descriptors with high predictive power for catalytic activity were constructed. These descriptors, which highlight the crucial role of hydroxyl sites, can be applied to designing new materials and to bringing them to the test with high-throughput screening, paving the path for accelerated catalyst design.
To facilitate accelerated catalyst design, a combined computation and experimental workflow based on machine learning algorithms is proposed, which detects key performance-related descriptors in a CO
2
to methanol reaction, for In
2
O
3
-based catalysts. |
doi_str_mv | 10.1039/d3cy00148b |
format | Article |
fullrecord | <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_d3cy00148b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d3cy00148b</sourcerecordid><originalsourceid>FETCH-rsc_primary_d3cy00148b3</originalsourceid><addsrcrecordid>eNqFj0FLAzEUhIMotGgvvRfeH4gm3VTbo5RKPfXivcRNdpM2mxdeUuv--25B9Ohc5oNhBoaxqRSPUlSrJ1PVvRBSLT9v2HgulOLq5Vne_vKiGrFJzgcxSK2kWM7HLL6C0UVzQ_7LRnC-dbw4wlPr0qnAGenYBDyDTil4a6AgJMIOy8DvkeO3NxbqYSH0uWRokGC9A9cbwtZGXTzGa6ezxemI4YHdNTpkO_nxezZ723yst5xyvU_kO039_u9H9V9-Ac8XTSY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A data-driven high-throughput workflow applied to promoted In-oxide catalysts for CO hydrogenation to methanol</title><source>Royal Society Of Chemistry Journals</source><creator>Khatamirad, Mohammad ; Fako, Edvin ; Boscagli, Chiara ; Müller, Matthias ; Ebert, Fabian ; Naumann d'Alnoncourt, Raoul ; Schaefer, Ansgar ; Schunk, Stephan Andreas ; Jevtovikj, Ivana ; Rosowski, Frank ; De, Sandip</creator><creatorcontrib>Khatamirad, Mohammad ; Fako, Edvin ; Boscagli, Chiara ; Müller, Matthias ; Ebert, Fabian ; Naumann d'Alnoncourt, Raoul ; Schaefer, Ansgar ; Schunk, Stephan Andreas ; Jevtovikj, Ivana ; Rosowski, Frank ; De, Sandip</creatorcontrib><description>We propose a novel high-throughput workflow, combining DFT-derived atomic scale interaction parameters with experimental data to identify key performance-related descriptors in a CO
2
to methanol reaction, for In-based catalysts. Utilizing advanced machine learning algorithms suitable for small datasets, secondary descriptors with high predictive power for catalytic activity were constructed. These descriptors, which highlight the crucial role of hydroxyl sites, can be applied to designing new materials and to bringing them to the test with high-throughput screening, paving the path for accelerated catalyst design.
To facilitate accelerated catalyst design, a combined computation and experimental workflow based on machine learning algorithms is proposed, which detects key performance-related descriptors in a CO
2
to methanol reaction, for In
2
O
3
-based catalysts.</description><identifier>ISSN: 2044-4753</identifier><identifier>EISSN: 2044-4761</identifier><identifier>DOI: 10.1039/d3cy00148b</identifier><ispartof>Catalysis science & technology, 2023-05, Vol.13 (9), p.2656-2661</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Khatamirad, Mohammad</creatorcontrib><creatorcontrib>Fako, Edvin</creatorcontrib><creatorcontrib>Boscagli, Chiara</creatorcontrib><creatorcontrib>Müller, Matthias</creatorcontrib><creatorcontrib>Ebert, Fabian</creatorcontrib><creatorcontrib>Naumann d'Alnoncourt, Raoul</creatorcontrib><creatorcontrib>Schaefer, Ansgar</creatorcontrib><creatorcontrib>Schunk, Stephan Andreas</creatorcontrib><creatorcontrib>Jevtovikj, Ivana</creatorcontrib><creatorcontrib>Rosowski, Frank</creatorcontrib><creatorcontrib>De, Sandip</creatorcontrib><title>A data-driven high-throughput workflow applied to promoted In-oxide catalysts for CO hydrogenation to methanol</title><title>Catalysis science & technology</title><description>We propose a novel high-throughput workflow, combining DFT-derived atomic scale interaction parameters with experimental data to identify key performance-related descriptors in a CO
2
to methanol reaction, for In-based catalysts. Utilizing advanced machine learning algorithms suitable for small datasets, secondary descriptors with high predictive power for catalytic activity were constructed. These descriptors, which highlight the crucial role of hydroxyl sites, can be applied to designing new materials and to bringing them to the test with high-throughput screening, paving the path for accelerated catalyst design.
To facilitate accelerated catalyst design, a combined computation and experimental workflow based on machine learning algorithms is proposed, which detects key performance-related descriptors in a CO
2
to methanol reaction, for In
2
O
3
-based catalysts.</description><issn>2044-4753</issn><issn>2044-4761</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFj0FLAzEUhIMotGgvvRfeH4gm3VTbo5RKPfXivcRNdpM2mxdeUuv--25B9Ohc5oNhBoaxqRSPUlSrJ1PVvRBSLT9v2HgulOLq5Vne_vKiGrFJzgcxSK2kWM7HLL6C0UVzQ_7LRnC-dbw4wlPr0qnAGenYBDyDTil4a6AgJMIOy8DvkeO3NxbqYSH0uWRokGC9A9cbwtZGXTzGa6ezxemI4YHdNTpkO_nxezZ723yst5xyvU_kO039_u9H9V9-Ac8XTSY</recordid><startdate>20230509</startdate><enddate>20230509</enddate><creator>Khatamirad, Mohammad</creator><creator>Fako, Edvin</creator><creator>Boscagli, Chiara</creator><creator>Müller, Matthias</creator><creator>Ebert, Fabian</creator><creator>Naumann d'Alnoncourt, Raoul</creator><creator>Schaefer, Ansgar</creator><creator>Schunk, Stephan Andreas</creator><creator>Jevtovikj, Ivana</creator><creator>Rosowski, Frank</creator><creator>De, Sandip</creator><scope/></search><sort><creationdate>20230509</creationdate><title>A data-driven high-throughput workflow applied to promoted In-oxide catalysts for CO hydrogenation to methanol</title><author>Khatamirad, Mohammad ; Fako, Edvin ; Boscagli, Chiara ; Müller, Matthias ; Ebert, Fabian ; Naumann d'Alnoncourt, Raoul ; Schaefer, Ansgar ; Schunk, Stephan Andreas ; Jevtovikj, Ivana ; Rosowski, Frank ; De, Sandip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_d3cy00148b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khatamirad, Mohammad</creatorcontrib><creatorcontrib>Fako, Edvin</creatorcontrib><creatorcontrib>Boscagli, Chiara</creatorcontrib><creatorcontrib>Müller, Matthias</creatorcontrib><creatorcontrib>Ebert, Fabian</creatorcontrib><creatorcontrib>Naumann d'Alnoncourt, Raoul</creatorcontrib><creatorcontrib>Schaefer, Ansgar</creatorcontrib><creatorcontrib>Schunk, Stephan Andreas</creatorcontrib><creatorcontrib>Jevtovikj, Ivana</creatorcontrib><creatorcontrib>Rosowski, Frank</creatorcontrib><creatorcontrib>De, Sandip</creatorcontrib><jtitle>Catalysis science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khatamirad, Mohammad</au><au>Fako, Edvin</au><au>Boscagli, Chiara</au><au>Müller, Matthias</au><au>Ebert, Fabian</au><au>Naumann d'Alnoncourt, Raoul</au><au>Schaefer, Ansgar</au><au>Schunk, Stephan Andreas</au><au>Jevtovikj, Ivana</au><au>Rosowski, Frank</au><au>De, Sandip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A data-driven high-throughput workflow applied to promoted In-oxide catalysts for CO hydrogenation to methanol</atitle><jtitle>Catalysis science & technology</jtitle><date>2023-05-09</date><risdate>2023</risdate><volume>13</volume><issue>9</issue><spage>2656</spage><epage>2661</epage><pages>2656-2661</pages><issn>2044-4753</issn><eissn>2044-4761</eissn><abstract>We propose a novel high-throughput workflow, combining DFT-derived atomic scale interaction parameters with experimental data to identify key performance-related descriptors in a CO
2
to methanol reaction, for In-based catalysts. Utilizing advanced machine learning algorithms suitable for small datasets, secondary descriptors with high predictive power for catalytic activity were constructed. These descriptors, which highlight the crucial role of hydroxyl sites, can be applied to designing new materials and to bringing them to the test with high-throughput screening, paving the path for accelerated catalyst design.
To facilitate accelerated catalyst design, a combined computation and experimental workflow based on machine learning algorithms is proposed, which detects key performance-related descriptors in a CO
2
to methanol reaction, for In
2
O
3
-based catalysts.</abstract><doi>10.1039/d3cy00148b</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2044-4753 |
ispartof | Catalysis science & technology, 2023-05, Vol.13 (9), p.2656-2661 |
issn | 2044-4753 2044-4761 |
language | |
recordid | cdi_rsc_primary_d3cy00148b |
source | Royal Society Of Chemistry Journals |
title | A data-driven high-throughput workflow applied to promoted In-oxide catalysts for CO hydrogenation to methanol |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A31%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20data-driven%20high-throughput%20workflow%20applied%20to%20promoted%20In-oxide%20catalysts%20for%20CO%20hydrogenation%20to%20methanol&rft.jtitle=Catalysis%20science%20&%20technology&rft.au=Khatamirad,%20Mohammad&rft.date=2023-05-09&rft.volume=13&rft.issue=9&rft.spage=2656&rft.epage=2661&rft.pages=2656-2661&rft.issn=2044-4753&rft.eissn=2044-4761&rft_id=info:doi/10.1039/d3cy00148b&rft_dat=%3Crsc%3Ed3cy00148b%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |