Breaking the Hoff/Le Bel rule by an electron-compensation strategy: the global energy minimum of NGaS

In tetracoordinate chemistry, there is an attractive scientific problem of how to make the planar configuration more stable than the tetrahedral configuration. For tetracoordinate nitrogen, the abundant studies indicate that the planar tetracoordinate nitrogen (ptN) is far less stable than the tetra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2024-01, Vol.26 (5), p.397-3911
Hauptverfasser: Jia, Xiu-dong, Du, Zhi-wei
Format: Artikel
Sprache:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3911
container_issue 5
container_start_page 397
container_title Physical chemistry chemical physics : PCCP
container_volume 26
creator Jia, Xiu-dong
Du, Zhi-wei
description In tetracoordinate chemistry, there is an attractive scientific problem of how to make the planar configuration more stable than the tetrahedral configuration. For tetracoordinate nitrogen, the abundant studies indicate that the planar tetracoordinate nitrogen (ptN) is far less stable than the tetrahedral tetracoordinate nitrogen (ttN). Herein, we introduced four S atoms to the unstable ptN-NGa 4 + and stable ttN-NGa 4 + by following an electron-compensation strategy. Surprisingly, ptN-NGa 4 S 4 + is more stable than ttN-NGa 4 S 4 + . Thermodynamically, ptN-NGa 4 S 4 + is the global energy minimum, which is 46.7 kcal mol −1 lower in energy than ttN-NGa 4 S 4 + . Dynamically, the BOMD simulations indicated that ptN-NGa 4 S 4 + has excellent dynamic stability at 4, 298, 500 and 1000 K, but the ttN-NGa 4 S 4 + is isomerized at 1000 K. Electronically, the HOMO-LUMO gap of ptN-NGa 4 S 4 + (6.91 eV) is much wider than that of ttN-NGa 4 S 4 + (5.25 eV). Moreover, AdNDP analyses showed that the eight 2c-2e Ga-S σ-bonds eliminated the 4s 2 lone pair/4s 2 lone pair repulsion between the four Ga atoms and provided a strong spatial protection for ptN-NGa 4 S 4 + ; and that the four 3c-2e Ga-S-Ga π back-bonds could compensate electrons for Ga, weakening the electron-deficiency of Ga. Simultaneously, the double 6σ/2π aromaticity further enhanced the stability of ptN-NGa 4 S 4 + . Thus, as the dynamically stable global energy minimum displaying double aromaticity, ptN-NGa 4 S 4 + will be more promising than ttN-NGa 4 S 4 + in gas phase generation. The introduction of S atoms makes ptN-NGa 4 S 4 + more stable than ttN-NGa 4 S 4 + . It has proved the applicability of the electron-compensation strategy in designing ptN.
doi_str_mv 10.1039/d3cp05290g
format Article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_d3cp05290g</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d3cp05290g</sourcerecordid><originalsourceid>FETCH-rsc_primary_d3cp05290g3</originalsourceid><addsrcrecordid>eNqFjrkKAjEURYMouDb2wvuB0cS4jaWiTiE22ksc38RoliGJxfy9IKKl1T1wOHAJ6TM6ZJSnoyvPSzodp1TWSItNZjxJ6WJS__J81iTtEO6UUjZlvEVw5VE8lJUQbwiZK4rRHmGFGvxTI1wqEBZQYx69s0nuTIk2iKichRC9iCir5TuV2l2EBrToZQVGWWWeBlwBh504dkmjEDpg77MdMthuTuss8SE_l14Z4avz7zv_51-jlke9</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Breaking the Hoff/Le Bel rule by an electron-compensation strategy: the global energy minimum of NGaS</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Jia, Xiu-dong ; Du, Zhi-wei</creator><creatorcontrib>Jia, Xiu-dong ; Du, Zhi-wei</creatorcontrib><description>In tetracoordinate chemistry, there is an attractive scientific problem of how to make the planar configuration more stable than the tetrahedral configuration. For tetracoordinate nitrogen, the abundant studies indicate that the planar tetracoordinate nitrogen (ptN) is far less stable than the tetrahedral tetracoordinate nitrogen (ttN). Herein, we introduced four S atoms to the unstable ptN-NGa 4 + and stable ttN-NGa 4 + by following an electron-compensation strategy. Surprisingly, ptN-NGa 4 S 4 + is more stable than ttN-NGa 4 S 4 + . Thermodynamically, ptN-NGa 4 S 4 + is the global energy minimum, which is 46.7 kcal mol −1 lower in energy than ttN-NGa 4 S 4 + . Dynamically, the BOMD simulations indicated that ptN-NGa 4 S 4 + has excellent dynamic stability at 4, 298, 500 and 1000 K, but the ttN-NGa 4 S 4 + is isomerized at 1000 K. Electronically, the HOMO-LUMO gap of ptN-NGa 4 S 4 + (6.91 eV) is much wider than that of ttN-NGa 4 S 4 + (5.25 eV). Moreover, AdNDP analyses showed that the eight 2c-2e Ga-S σ-bonds eliminated the 4s 2 lone pair/4s 2 lone pair repulsion between the four Ga atoms and provided a strong spatial protection for ptN-NGa 4 S 4 + ; and that the four 3c-2e Ga-S-Ga π back-bonds could compensate electrons for Ga, weakening the electron-deficiency of Ga. Simultaneously, the double 6σ/2π aromaticity further enhanced the stability of ptN-NGa 4 S 4 + . Thus, as the dynamically stable global energy minimum displaying double aromaticity, ptN-NGa 4 S 4 + will be more promising than ttN-NGa 4 S 4 + in gas phase generation. The introduction of S atoms makes ptN-NGa 4 S 4 + more stable than ttN-NGa 4 S 4 + . It has proved the applicability of the electron-compensation strategy in designing ptN.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d3cp05290g</identifier><ispartof>Physical chemistry chemical physics : PCCP, 2024-01, Vol.26 (5), p.397-3911</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jia, Xiu-dong</creatorcontrib><creatorcontrib>Du, Zhi-wei</creatorcontrib><title>Breaking the Hoff/Le Bel rule by an electron-compensation strategy: the global energy minimum of NGaS</title><title>Physical chemistry chemical physics : PCCP</title><description>In tetracoordinate chemistry, there is an attractive scientific problem of how to make the planar configuration more stable than the tetrahedral configuration. For tetracoordinate nitrogen, the abundant studies indicate that the planar tetracoordinate nitrogen (ptN) is far less stable than the tetrahedral tetracoordinate nitrogen (ttN). Herein, we introduced four S atoms to the unstable ptN-NGa 4 + and stable ttN-NGa 4 + by following an electron-compensation strategy. Surprisingly, ptN-NGa 4 S 4 + is more stable than ttN-NGa 4 S 4 + . Thermodynamically, ptN-NGa 4 S 4 + is the global energy minimum, which is 46.7 kcal mol −1 lower in energy than ttN-NGa 4 S 4 + . Dynamically, the BOMD simulations indicated that ptN-NGa 4 S 4 + has excellent dynamic stability at 4, 298, 500 and 1000 K, but the ttN-NGa 4 S 4 + is isomerized at 1000 K. Electronically, the HOMO-LUMO gap of ptN-NGa 4 S 4 + (6.91 eV) is much wider than that of ttN-NGa 4 S 4 + (5.25 eV). Moreover, AdNDP analyses showed that the eight 2c-2e Ga-S σ-bonds eliminated the 4s 2 lone pair/4s 2 lone pair repulsion between the four Ga atoms and provided a strong spatial protection for ptN-NGa 4 S 4 + ; and that the four 3c-2e Ga-S-Ga π back-bonds could compensate electrons for Ga, weakening the electron-deficiency of Ga. Simultaneously, the double 6σ/2π aromaticity further enhanced the stability of ptN-NGa 4 S 4 + . Thus, as the dynamically stable global energy minimum displaying double aromaticity, ptN-NGa 4 S 4 + will be more promising than ttN-NGa 4 S 4 + in gas phase generation. The introduction of S atoms makes ptN-NGa 4 S 4 + more stable than ttN-NGa 4 S 4 + . It has proved the applicability of the electron-compensation strategy in designing ptN.</description><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFjrkKAjEURYMouDb2wvuB0cS4jaWiTiE22ksc38RoliGJxfy9IKKl1T1wOHAJ6TM6ZJSnoyvPSzodp1TWSItNZjxJ6WJS__J81iTtEO6UUjZlvEVw5VE8lJUQbwiZK4rRHmGFGvxTI1wqEBZQYx69s0nuTIk2iKichRC9iCir5TuV2l2EBrToZQVGWWWeBlwBh504dkmjEDpg77MdMthuTuss8SE_l14Z4avz7zv_51-jlke9</recordid><startdate>20240131</startdate><enddate>20240131</enddate><creator>Jia, Xiu-dong</creator><creator>Du, Zhi-wei</creator><scope/></search><sort><creationdate>20240131</creationdate><title>Breaking the Hoff/Le Bel rule by an electron-compensation strategy: the global energy minimum of NGaS</title><author>Jia, Xiu-dong ; Du, Zhi-wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_d3cp05290g3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Xiu-dong</creatorcontrib><creatorcontrib>Du, Zhi-wei</creatorcontrib><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Xiu-dong</au><au>Du, Zhi-wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Breaking the Hoff/Le Bel rule by an electron-compensation strategy: the global energy minimum of NGaS</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2024-01-31</date><risdate>2024</risdate><volume>26</volume><issue>5</issue><spage>397</spage><epage>3911</epage><pages>397-3911</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>In tetracoordinate chemistry, there is an attractive scientific problem of how to make the planar configuration more stable than the tetrahedral configuration. For tetracoordinate nitrogen, the abundant studies indicate that the planar tetracoordinate nitrogen (ptN) is far less stable than the tetrahedral tetracoordinate nitrogen (ttN). Herein, we introduced four S atoms to the unstable ptN-NGa 4 + and stable ttN-NGa 4 + by following an electron-compensation strategy. Surprisingly, ptN-NGa 4 S 4 + is more stable than ttN-NGa 4 S 4 + . Thermodynamically, ptN-NGa 4 S 4 + is the global energy minimum, which is 46.7 kcal mol −1 lower in energy than ttN-NGa 4 S 4 + . Dynamically, the BOMD simulations indicated that ptN-NGa 4 S 4 + has excellent dynamic stability at 4, 298, 500 and 1000 K, but the ttN-NGa 4 S 4 + is isomerized at 1000 K. Electronically, the HOMO-LUMO gap of ptN-NGa 4 S 4 + (6.91 eV) is much wider than that of ttN-NGa 4 S 4 + (5.25 eV). Moreover, AdNDP analyses showed that the eight 2c-2e Ga-S σ-bonds eliminated the 4s 2 lone pair/4s 2 lone pair repulsion between the four Ga atoms and provided a strong spatial protection for ptN-NGa 4 S 4 + ; and that the four 3c-2e Ga-S-Ga π back-bonds could compensate electrons for Ga, weakening the electron-deficiency of Ga. Simultaneously, the double 6σ/2π aromaticity further enhanced the stability of ptN-NGa 4 S 4 + . Thus, as the dynamically stable global energy minimum displaying double aromaticity, ptN-NGa 4 S 4 + will be more promising than ttN-NGa 4 S 4 + in gas phase generation. The introduction of S atoms makes ptN-NGa 4 S 4 + more stable than ttN-NGa 4 S 4 + . It has proved the applicability of the electron-compensation strategy in designing ptN.</abstract><doi>10.1039/d3cp05290g</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2024-01, Vol.26 (5), p.397-3911
issn 1463-9076
1463-9084
language
recordid cdi_rsc_primary_d3cp05290g
source Royal Society Of Chemistry Journals; Alma/SFX Local Collection
title Breaking the Hoff/Le Bel rule by an electron-compensation strategy: the global energy minimum of NGaS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T03%3A17%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Breaking%20the%20Hoff/Le%20Bel%20rule%20by%20an%20electron-compensation%20strategy:%20the%20global%20energy%20minimum%20of%20NGaS&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Jia,%20Xiu-dong&rft.date=2024-01-31&rft.volume=26&rft.issue=5&rft.spage=397&rft.epage=3911&rft.pages=397-3911&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d3cp05290g&rft_dat=%3Crsc%3Ed3cp05290g%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true