Breaking the Hoff/Le Bel rule by an electron-compensation strategy: the global energy minimum of NGaS
In tetracoordinate chemistry, there is an attractive scientific problem of how to make the planar configuration more stable than the tetrahedral configuration. For tetracoordinate nitrogen, the abundant studies indicate that the planar tetracoordinate nitrogen (ptN) is far less stable than the tetra...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2024-01, Vol.26 (5), p.397-3911 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3911 |
---|---|
container_issue | 5 |
container_start_page | 397 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 26 |
creator | Jia, Xiu-dong Du, Zhi-wei |
description | In tetracoordinate chemistry, there is an attractive scientific problem of how to make the planar configuration more stable than the tetrahedral configuration. For tetracoordinate nitrogen, the abundant studies indicate that the planar tetracoordinate nitrogen (ptN) is far less stable than the tetrahedral tetracoordinate nitrogen (ttN). Herein, we introduced four S atoms to the unstable ptN-NGa
4
+
and stable ttN-NGa
4
+
by following an electron-compensation strategy. Surprisingly, ptN-NGa
4
S
4
+
is more stable than ttN-NGa
4
S
4
+
. Thermodynamically, ptN-NGa
4
S
4
+
is the global energy minimum, which is 46.7 kcal mol
−1
lower in energy than ttN-NGa
4
S
4
+
. Dynamically, the BOMD simulations indicated that ptN-NGa
4
S
4
+
has excellent dynamic stability at 4, 298, 500 and 1000 K, but the ttN-NGa
4
S
4
+
is isomerized at 1000 K. Electronically, the HOMO-LUMO gap of ptN-NGa
4
S
4
+
(6.91 eV) is much wider than that of ttN-NGa
4
S
4
+
(5.25 eV). Moreover, AdNDP analyses showed that the eight 2c-2e Ga-S σ-bonds eliminated the 4s
2
lone pair/4s
2
lone pair repulsion between the four Ga atoms and provided a strong spatial protection for ptN-NGa
4
S
4
+
; and that the four 3c-2e Ga-S-Ga π back-bonds could compensate electrons for Ga, weakening the electron-deficiency of Ga. Simultaneously, the double 6σ/2π aromaticity further enhanced the stability of ptN-NGa
4
S
4
+
. Thus, as the dynamically stable global energy minimum displaying double aromaticity, ptN-NGa
4
S
4
+
will be more promising than ttN-NGa
4
S
4
+
in gas phase generation.
The introduction of S atoms makes ptN-NGa
4
S
4
+
more stable than ttN-NGa
4
S
4
+
. It has proved the applicability of the electron-compensation strategy in designing ptN. |
doi_str_mv | 10.1039/d3cp05290g |
format | Article |
fullrecord | <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_d3cp05290g</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d3cp05290g</sourcerecordid><originalsourceid>FETCH-rsc_primary_d3cp05290g3</originalsourceid><addsrcrecordid>eNqFjrkKAjEURYMouDb2wvuB0cS4jaWiTiE22ksc38RoliGJxfy9IKKl1T1wOHAJ6TM6ZJSnoyvPSzodp1TWSItNZjxJ6WJS__J81iTtEO6UUjZlvEVw5VE8lJUQbwiZK4rRHmGFGvxTI1wqEBZQYx69s0nuTIk2iKichRC9iCir5TuV2l2EBrToZQVGWWWeBlwBh504dkmjEDpg77MdMthuTuss8SE_l14Z4avz7zv_51-jlke9</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Breaking the Hoff/Le Bel rule by an electron-compensation strategy: the global energy minimum of NGaS</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Jia, Xiu-dong ; Du, Zhi-wei</creator><creatorcontrib>Jia, Xiu-dong ; Du, Zhi-wei</creatorcontrib><description>In tetracoordinate chemistry, there is an attractive scientific problem of how to make the planar configuration more stable than the tetrahedral configuration. For tetracoordinate nitrogen, the abundant studies indicate that the planar tetracoordinate nitrogen (ptN) is far less stable than the tetrahedral tetracoordinate nitrogen (ttN). Herein, we introduced four S atoms to the unstable ptN-NGa
4
+
and stable ttN-NGa
4
+
by following an electron-compensation strategy. Surprisingly, ptN-NGa
4
S
4
+
is more stable than ttN-NGa
4
S
4
+
. Thermodynamically, ptN-NGa
4
S
4
+
is the global energy minimum, which is 46.7 kcal mol
−1
lower in energy than ttN-NGa
4
S
4
+
. Dynamically, the BOMD simulations indicated that ptN-NGa
4
S
4
+
has excellent dynamic stability at 4, 298, 500 and 1000 K, but the ttN-NGa
4
S
4
+
is isomerized at 1000 K. Electronically, the HOMO-LUMO gap of ptN-NGa
4
S
4
+
(6.91 eV) is much wider than that of ttN-NGa
4
S
4
+
(5.25 eV). Moreover, AdNDP analyses showed that the eight 2c-2e Ga-S σ-bonds eliminated the 4s
2
lone pair/4s
2
lone pair repulsion between the four Ga atoms and provided a strong spatial protection for ptN-NGa
4
S
4
+
; and that the four 3c-2e Ga-S-Ga π back-bonds could compensate electrons for Ga, weakening the electron-deficiency of Ga. Simultaneously, the double 6σ/2π aromaticity further enhanced the stability of ptN-NGa
4
S
4
+
. Thus, as the dynamically stable global energy minimum displaying double aromaticity, ptN-NGa
4
S
4
+
will be more promising than ttN-NGa
4
S
4
+
in gas phase generation.
The introduction of S atoms makes ptN-NGa
4
S
4
+
more stable than ttN-NGa
4
S
4
+
. It has proved the applicability of the electron-compensation strategy in designing ptN.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d3cp05290g</identifier><ispartof>Physical chemistry chemical physics : PCCP, 2024-01, Vol.26 (5), p.397-3911</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jia, Xiu-dong</creatorcontrib><creatorcontrib>Du, Zhi-wei</creatorcontrib><title>Breaking the Hoff/Le Bel rule by an electron-compensation strategy: the global energy minimum of NGaS</title><title>Physical chemistry chemical physics : PCCP</title><description>In tetracoordinate chemistry, there is an attractive scientific problem of how to make the planar configuration more stable than the tetrahedral configuration. For tetracoordinate nitrogen, the abundant studies indicate that the planar tetracoordinate nitrogen (ptN) is far less stable than the tetrahedral tetracoordinate nitrogen (ttN). Herein, we introduced four S atoms to the unstable ptN-NGa
4
+
and stable ttN-NGa
4
+
by following an electron-compensation strategy. Surprisingly, ptN-NGa
4
S
4
+
is more stable than ttN-NGa
4
S
4
+
. Thermodynamically, ptN-NGa
4
S
4
+
is the global energy minimum, which is 46.7 kcal mol
−1
lower in energy than ttN-NGa
4
S
4
+
. Dynamically, the BOMD simulations indicated that ptN-NGa
4
S
4
+
has excellent dynamic stability at 4, 298, 500 and 1000 K, but the ttN-NGa
4
S
4
+
is isomerized at 1000 K. Electronically, the HOMO-LUMO gap of ptN-NGa
4
S
4
+
(6.91 eV) is much wider than that of ttN-NGa
4
S
4
+
(5.25 eV). Moreover, AdNDP analyses showed that the eight 2c-2e Ga-S σ-bonds eliminated the 4s
2
lone pair/4s
2
lone pair repulsion between the four Ga atoms and provided a strong spatial protection for ptN-NGa
4
S
4
+
; and that the four 3c-2e Ga-S-Ga π back-bonds could compensate electrons for Ga, weakening the electron-deficiency of Ga. Simultaneously, the double 6σ/2π aromaticity further enhanced the stability of ptN-NGa
4
S
4
+
. Thus, as the dynamically stable global energy minimum displaying double aromaticity, ptN-NGa
4
S
4
+
will be more promising than ttN-NGa
4
S
4
+
in gas phase generation.
The introduction of S atoms makes ptN-NGa
4
S
4
+
more stable than ttN-NGa
4
S
4
+
. It has proved the applicability of the electron-compensation strategy in designing ptN.</description><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFjrkKAjEURYMouDb2wvuB0cS4jaWiTiE22ksc38RoliGJxfy9IKKl1T1wOHAJ6TM6ZJSnoyvPSzodp1TWSItNZjxJ6WJS__J81iTtEO6UUjZlvEVw5VE8lJUQbwiZK4rRHmGFGvxTI1wqEBZQYx69s0nuTIk2iKichRC9iCir5TuV2l2EBrToZQVGWWWeBlwBh504dkmjEDpg77MdMthuTuss8SE_l14Z4avz7zv_51-jlke9</recordid><startdate>20240131</startdate><enddate>20240131</enddate><creator>Jia, Xiu-dong</creator><creator>Du, Zhi-wei</creator><scope/></search><sort><creationdate>20240131</creationdate><title>Breaking the Hoff/Le Bel rule by an electron-compensation strategy: the global energy minimum of NGaS</title><author>Jia, Xiu-dong ; Du, Zhi-wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_d3cp05290g3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Xiu-dong</creatorcontrib><creatorcontrib>Du, Zhi-wei</creatorcontrib><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Xiu-dong</au><au>Du, Zhi-wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Breaking the Hoff/Le Bel rule by an electron-compensation strategy: the global energy minimum of NGaS</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2024-01-31</date><risdate>2024</risdate><volume>26</volume><issue>5</issue><spage>397</spage><epage>3911</epage><pages>397-3911</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>In tetracoordinate chemistry, there is an attractive scientific problem of how to make the planar configuration more stable than the tetrahedral configuration. For tetracoordinate nitrogen, the abundant studies indicate that the planar tetracoordinate nitrogen (ptN) is far less stable than the tetrahedral tetracoordinate nitrogen (ttN). Herein, we introduced four S atoms to the unstable ptN-NGa
4
+
and stable ttN-NGa
4
+
by following an electron-compensation strategy. Surprisingly, ptN-NGa
4
S
4
+
is more stable than ttN-NGa
4
S
4
+
. Thermodynamically, ptN-NGa
4
S
4
+
is the global energy minimum, which is 46.7 kcal mol
−1
lower in energy than ttN-NGa
4
S
4
+
. Dynamically, the BOMD simulations indicated that ptN-NGa
4
S
4
+
has excellent dynamic stability at 4, 298, 500 and 1000 K, but the ttN-NGa
4
S
4
+
is isomerized at 1000 K. Electronically, the HOMO-LUMO gap of ptN-NGa
4
S
4
+
(6.91 eV) is much wider than that of ttN-NGa
4
S
4
+
(5.25 eV). Moreover, AdNDP analyses showed that the eight 2c-2e Ga-S σ-bonds eliminated the 4s
2
lone pair/4s
2
lone pair repulsion between the four Ga atoms and provided a strong spatial protection for ptN-NGa
4
S
4
+
; and that the four 3c-2e Ga-S-Ga π back-bonds could compensate electrons for Ga, weakening the electron-deficiency of Ga. Simultaneously, the double 6σ/2π aromaticity further enhanced the stability of ptN-NGa
4
S
4
+
. Thus, as the dynamically stable global energy minimum displaying double aromaticity, ptN-NGa
4
S
4
+
will be more promising than ttN-NGa
4
S
4
+
in gas phase generation.
The introduction of S atoms makes ptN-NGa
4
S
4
+
more stable than ttN-NGa
4
S
4
+
. It has proved the applicability of the electron-compensation strategy in designing ptN.</abstract><doi>10.1039/d3cp05290g</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2024-01, Vol.26 (5), p.397-3911 |
issn | 1463-9076 1463-9084 |
language | |
recordid | cdi_rsc_primary_d3cp05290g |
source | Royal Society Of Chemistry Journals; Alma/SFX Local Collection |
title | Breaking the Hoff/Le Bel rule by an electron-compensation strategy: the global energy minimum of NGaS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T03%3A17%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Breaking%20the%20Hoff/Le%20Bel%20rule%20by%20an%20electron-compensation%20strategy:%20the%20global%20energy%20minimum%20of%20NGaS&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Jia,%20Xiu-dong&rft.date=2024-01-31&rft.volume=26&rft.issue=5&rft.spage=397&rft.epage=3911&rft.pages=397-3911&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d3cp05290g&rft_dat=%3Crsc%3Ed3cp05290g%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |