Evolution of local edge state braiding and spin topological transport characterization of Te-doped monolayer 1T′-MoS

We conducted first-principles calculations to investigate the dynamic braiding of local edge states and the spin topological transport mechanism in a strong topological MoS 1.75 Te 0.25 matrix. The presence of type-II Van Hove singularity in the middle of the X - S path indicates a strong cohesive i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2023-11, Vol.25 (43), p.29633-2964
Hauptverfasser: Cheng, Qian, Yan, Zhengxin, Song, Wei, Kong, Juntao, Li, Dongxin, Xu, Wuyue, Xie, You, Liang, Xingkun, Zhao, Zehua
Format: Artikel
Sprache:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2964
container_issue 43
container_start_page 29633
container_title Physical chemistry chemical physics : PCCP
container_volume 25
creator Cheng, Qian
Yan, Zhengxin
Song, Wei
Kong, Juntao
Li, Dongxin
Xu, Wuyue
Xie, You
Liang, Xingkun
Zhao, Zehua
description We conducted first-principles calculations to investigate the dynamic braiding of local edge states and the spin topological transport mechanism in a strong topological MoS 1.75 Te 0.25 matrix. The presence of type-II Van Hove singularity in the middle of the X - S path indicates a strong cohesive interaction and a paring condensation mechanism within the matrix. The surface state data of MoS 1.75 Te 0.25 clearly demonstrate the characteristic features of strong regular loop braiding in spin transport. The spin Hall conductivity of the matrix was determined from the anisotropic characteristics of the spin Berry curvature. The phase transition of the spin Hall conductivity was evidenced by the positive sign of local spin polarization strength, primarily contributed by the d z 2 orbital of Mo atoms, and the negative sign of spin polarization strength, mainly contributed by the p-p x orbitals of S atoms. Moreover, the inclusion of Te selectively tuned the spin transport efficiency of the d z 2 and p x orbitals. Comprehensive braiding and readout of edge states can be achieved using an artificially designed MoS 1.75 Te 0.25 spintronic device. This 2D fractional braiding holds significant potential for applications in topological quantum computation. Our study explores spin transport in a MoS 1.75 Te 0.25 matrix, and find two types of fractional braidings in surface states: "diamond" and "tropical fish", offering prospects for topological quantum computing.
doi_str_mv 10.1039/d3cp03566b
format Article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_d3cp03566b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d3cp03566b</sourcerecordid><originalsourceid>FETCH-rsc_primary_d3cp03566b3</originalsourceid><addsrcrecordid>eNqFj8FqQjEQRUNRqFY33RfmB16bEH3WdVHcuOrby5jEZyRmwiQV7Krf1E_yS0TQdunqXjiXA1eIZyVfldTTN6tNknpc1-sH0VOjWldT-T7q_PVJ_Sj6Oe-klGqsdE8cZgcKX8VTBNpAIIMBnG0d5ILFwZrRWx9bwGghJx-hUKJArb8MC2PMibiA2SKjKY79N95kjassJWdhT5ECHh2Dak4_v9WSPgeiu8GQ3fCaT-JlPms-FhVns0rs98jH1f8ZfY-fASRlUCI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Evolution of local edge state braiding and spin topological transport characterization of Te-doped monolayer 1T′-MoS</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Cheng, Qian ; Yan, Zhengxin ; Song, Wei ; Kong, Juntao ; Li, Dongxin ; Xu, Wuyue ; Xie, You ; Liang, Xingkun ; Zhao, Zehua</creator><creatorcontrib>Cheng, Qian ; Yan, Zhengxin ; Song, Wei ; Kong, Juntao ; Li, Dongxin ; Xu, Wuyue ; Xie, You ; Liang, Xingkun ; Zhao, Zehua</creatorcontrib><description>We conducted first-principles calculations to investigate the dynamic braiding of local edge states and the spin topological transport mechanism in a strong topological MoS 1.75 Te 0.25 matrix. The presence of type-II Van Hove singularity in the middle of the X - S path indicates a strong cohesive interaction and a paring condensation mechanism within the matrix. The surface state data of MoS 1.75 Te 0.25 clearly demonstrate the characteristic features of strong regular loop braiding in spin transport. The spin Hall conductivity of the matrix was determined from the anisotropic characteristics of the spin Berry curvature. The phase transition of the spin Hall conductivity was evidenced by the positive sign of local spin polarization strength, primarily contributed by the d z 2 orbital of Mo atoms, and the negative sign of spin polarization strength, mainly contributed by the p-p x orbitals of S atoms. Moreover, the inclusion of Te selectively tuned the spin transport efficiency of the d z 2 and p x orbitals. Comprehensive braiding and readout of edge states can be achieved using an artificially designed MoS 1.75 Te 0.25 spintronic device. This 2D fractional braiding holds significant potential for applications in topological quantum computation. Our study explores spin transport in a MoS 1.75 Te 0.25 matrix, and find two types of fractional braidings in surface states: "diamond" and "tropical fish", offering prospects for topological quantum computing.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d3cp03566b</identifier><ispartof>Physical chemistry chemical physics : PCCP, 2023-11, Vol.25 (43), p.29633-2964</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27933,27934</link.rule.ids></links><search><creatorcontrib>Cheng, Qian</creatorcontrib><creatorcontrib>Yan, Zhengxin</creatorcontrib><creatorcontrib>Song, Wei</creatorcontrib><creatorcontrib>Kong, Juntao</creatorcontrib><creatorcontrib>Li, Dongxin</creatorcontrib><creatorcontrib>Xu, Wuyue</creatorcontrib><creatorcontrib>Xie, You</creatorcontrib><creatorcontrib>Liang, Xingkun</creatorcontrib><creatorcontrib>Zhao, Zehua</creatorcontrib><title>Evolution of local edge state braiding and spin topological transport characterization of Te-doped monolayer 1T′-MoS</title><title>Physical chemistry chemical physics : PCCP</title><description>We conducted first-principles calculations to investigate the dynamic braiding of local edge states and the spin topological transport mechanism in a strong topological MoS 1.75 Te 0.25 matrix. The presence of type-II Van Hove singularity in the middle of the X - S path indicates a strong cohesive interaction and a paring condensation mechanism within the matrix. The surface state data of MoS 1.75 Te 0.25 clearly demonstrate the characteristic features of strong regular loop braiding in spin transport. The spin Hall conductivity of the matrix was determined from the anisotropic characteristics of the spin Berry curvature. The phase transition of the spin Hall conductivity was evidenced by the positive sign of local spin polarization strength, primarily contributed by the d z 2 orbital of Mo atoms, and the negative sign of spin polarization strength, mainly contributed by the p-p x orbitals of S atoms. Moreover, the inclusion of Te selectively tuned the spin transport efficiency of the d z 2 and p x orbitals. Comprehensive braiding and readout of edge states can be achieved using an artificially designed MoS 1.75 Te 0.25 spintronic device. This 2D fractional braiding holds significant potential for applications in topological quantum computation. Our study explores spin transport in a MoS 1.75 Te 0.25 matrix, and find two types of fractional braidings in surface states: "diamond" and "tropical fish", offering prospects for topological quantum computing.</description><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFj8FqQjEQRUNRqFY33RfmB16bEH3WdVHcuOrby5jEZyRmwiQV7Krf1E_yS0TQdunqXjiXA1eIZyVfldTTN6tNknpc1-sH0VOjWldT-T7q_PVJ_Sj6Oe-klGqsdE8cZgcKX8VTBNpAIIMBnG0d5ILFwZrRWx9bwGghJx-hUKJArb8MC2PMibiA2SKjKY79N95kjassJWdhT5ECHh2Dak4_v9WSPgeiu8GQ3fCaT-JlPms-FhVns0rs98jH1f8ZfY-fASRlUCI</recordid><startdate>20231108</startdate><enddate>20231108</enddate><creator>Cheng, Qian</creator><creator>Yan, Zhengxin</creator><creator>Song, Wei</creator><creator>Kong, Juntao</creator><creator>Li, Dongxin</creator><creator>Xu, Wuyue</creator><creator>Xie, You</creator><creator>Liang, Xingkun</creator><creator>Zhao, Zehua</creator><scope/></search><sort><creationdate>20231108</creationdate><title>Evolution of local edge state braiding and spin topological transport characterization of Te-doped monolayer 1T′-MoS</title><author>Cheng, Qian ; Yan, Zhengxin ; Song, Wei ; Kong, Juntao ; Li, Dongxin ; Xu, Wuyue ; Xie, You ; Liang, Xingkun ; Zhao, Zehua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_d3cp03566b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Qian</creatorcontrib><creatorcontrib>Yan, Zhengxin</creatorcontrib><creatorcontrib>Song, Wei</creatorcontrib><creatorcontrib>Kong, Juntao</creatorcontrib><creatorcontrib>Li, Dongxin</creatorcontrib><creatorcontrib>Xu, Wuyue</creatorcontrib><creatorcontrib>Xie, You</creatorcontrib><creatorcontrib>Liang, Xingkun</creatorcontrib><creatorcontrib>Zhao, Zehua</creatorcontrib><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Qian</au><au>Yan, Zhengxin</au><au>Song, Wei</au><au>Kong, Juntao</au><au>Li, Dongxin</au><au>Xu, Wuyue</au><au>Xie, You</au><au>Liang, Xingkun</au><au>Zhao, Zehua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of local edge state braiding and spin topological transport characterization of Te-doped monolayer 1T′-MoS</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2023-11-08</date><risdate>2023</risdate><volume>25</volume><issue>43</issue><spage>29633</spage><epage>2964</epage><pages>29633-2964</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>We conducted first-principles calculations to investigate the dynamic braiding of local edge states and the spin topological transport mechanism in a strong topological MoS 1.75 Te 0.25 matrix. The presence of type-II Van Hove singularity in the middle of the X - S path indicates a strong cohesive interaction and a paring condensation mechanism within the matrix. The surface state data of MoS 1.75 Te 0.25 clearly demonstrate the characteristic features of strong regular loop braiding in spin transport. The spin Hall conductivity of the matrix was determined from the anisotropic characteristics of the spin Berry curvature. The phase transition of the spin Hall conductivity was evidenced by the positive sign of local spin polarization strength, primarily contributed by the d z 2 orbital of Mo atoms, and the negative sign of spin polarization strength, mainly contributed by the p-p x orbitals of S atoms. Moreover, the inclusion of Te selectively tuned the spin transport efficiency of the d z 2 and p x orbitals. Comprehensive braiding and readout of edge states can be achieved using an artificially designed MoS 1.75 Te 0.25 spintronic device. This 2D fractional braiding holds significant potential for applications in topological quantum computation. Our study explores spin transport in a MoS 1.75 Te 0.25 matrix, and find two types of fractional braidings in surface states: "diamond" and "tropical fish", offering prospects for topological quantum computing.</abstract><doi>10.1039/d3cp03566b</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2023-11, Vol.25 (43), p.29633-2964
issn 1463-9076
1463-9084
language
recordid cdi_rsc_primary_d3cp03566b
source Royal Society Of Chemistry Journals; Alma/SFX Local Collection
title Evolution of local edge state braiding and spin topological transport characterization of Te-doped monolayer 1T′-MoS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-29T23%3A38%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20local%20edge%20state%20braiding%20and%20spin%20topological%20transport%20characterization%20of%20Te-doped%20monolayer%201T%E2%80%B2-MoS&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Cheng,%20Qian&rft.date=2023-11-08&rft.volume=25&rft.issue=43&rft.spage=29633&rft.epage=2964&rft.pages=29633-2964&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d3cp03566b&rft_dat=%3Crsc%3Ed3cp03566b%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true