Evolution of local edge state braiding and spin topological transport characterization of Te-doped monolayer 1T′-MoS
We conducted first-principles calculations to investigate the dynamic braiding of local edge states and the spin topological transport mechanism in a strong topological MoS 1.75 Te 0.25 matrix. The presence of type-II Van Hove singularity in the middle of the X - S path indicates a strong cohesive i...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2023-11, Vol.25 (43), p.29633-2964 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2964 |
---|---|
container_issue | 43 |
container_start_page | 29633 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 25 |
creator | Cheng, Qian Yan, Zhengxin Song, Wei Kong, Juntao Li, Dongxin Xu, Wuyue Xie, You Liang, Xingkun Zhao, Zehua |
description | We conducted first-principles calculations to investigate the dynamic braiding of local edge states and the spin topological transport mechanism in a strong topological MoS
1.75
Te
0.25
matrix. The presence of type-II Van Hove singularity in the middle of the
X
-
S
path indicates a strong cohesive interaction and a paring condensation mechanism within the matrix. The surface state data of MoS
1.75
Te
0.25
clearly demonstrate the characteristic features of strong regular loop braiding in spin transport. The spin Hall conductivity of the matrix was determined from the anisotropic characteristics of the spin Berry curvature. The phase transition of the spin Hall conductivity was evidenced by the positive sign of local spin polarization strength, primarily contributed by the d
z
2
orbital of Mo atoms, and the negative sign of spin polarization strength, mainly contributed by the p-p
x
orbitals of S atoms. Moreover, the inclusion of Te selectively tuned the spin transport efficiency of the d
z
2
and p
x
orbitals. Comprehensive braiding and readout of edge states can be achieved using an artificially designed MoS
1.75
Te
0.25
spintronic device. This 2D fractional braiding holds significant potential for applications in topological quantum computation.
Our study explores spin transport in a MoS
1.75
Te
0.25
matrix, and find two types of fractional braidings in surface states: "diamond" and "tropical fish", offering prospects for topological quantum computing. |
doi_str_mv | 10.1039/d3cp03566b |
format | Article |
fullrecord | <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_d3cp03566b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d3cp03566b</sourcerecordid><originalsourceid>FETCH-rsc_primary_d3cp03566b3</originalsourceid><addsrcrecordid>eNqFj8FqQjEQRUNRqFY33RfmB16bEH3WdVHcuOrby5jEZyRmwiQV7Krf1E_yS0TQdunqXjiXA1eIZyVfldTTN6tNknpc1-sH0VOjWldT-T7q_PVJ_Sj6Oe-klGqsdE8cZgcKX8VTBNpAIIMBnG0d5ILFwZrRWx9bwGghJx-hUKJArb8MC2PMibiA2SKjKY79N95kjassJWdhT5ECHh2Dak4_v9WSPgeiu8GQ3fCaT-JlPms-FhVns0rs98jH1f8ZfY-fASRlUCI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Evolution of local edge state braiding and spin topological transport characterization of Te-doped monolayer 1T′-MoS</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Cheng, Qian ; Yan, Zhengxin ; Song, Wei ; Kong, Juntao ; Li, Dongxin ; Xu, Wuyue ; Xie, You ; Liang, Xingkun ; Zhao, Zehua</creator><creatorcontrib>Cheng, Qian ; Yan, Zhengxin ; Song, Wei ; Kong, Juntao ; Li, Dongxin ; Xu, Wuyue ; Xie, You ; Liang, Xingkun ; Zhao, Zehua</creatorcontrib><description>We conducted first-principles calculations to investigate the dynamic braiding of local edge states and the spin topological transport mechanism in a strong topological MoS
1.75
Te
0.25
matrix. The presence of type-II Van Hove singularity in the middle of the
X
-
S
path indicates a strong cohesive interaction and a paring condensation mechanism within the matrix. The surface state data of MoS
1.75
Te
0.25
clearly demonstrate the characteristic features of strong regular loop braiding in spin transport. The spin Hall conductivity of the matrix was determined from the anisotropic characteristics of the spin Berry curvature. The phase transition of the spin Hall conductivity was evidenced by the positive sign of local spin polarization strength, primarily contributed by the d
z
2
orbital of Mo atoms, and the negative sign of spin polarization strength, mainly contributed by the p-p
x
orbitals of S atoms. Moreover, the inclusion of Te selectively tuned the spin transport efficiency of the d
z
2
and p
x
orbitals. Comprehensive braiding and readout of edge states can be achieved using an artificially designed MoS
1.75
Te
0.25
spintronic device. This 2D fractional braiding holds significant potential for applications in topological quantum computation.
Our study explores spin transport in a MoS
1.75
Te
0.25
matrix, and find two types of fractional braidings in surface states: "diamond" and "tropical fish", offering prospects for topological quantum computing.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d3cp03566b</identifier><ispartof>Physical chemistry chemical physics : PCCP, 2023-11, Vol.25 (43), p.29633-2964</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27933,27934</link.rule.ids></links><search><creatorcontrib>Cheng, Qian</creatorcontrib><creatorcontrib>Yan, Zhengxin</creatorcontrib><creatorcontrib>Song, Wei</creatorcontrib><creatorcontrib>Kong, Juntao</creatorcontrib><creatorcontrib>Li, Dongxin</creatorcontrib><creatorcontrib>Xu, Wuyue</creatorcontrib><creatorcontrib>Xie, You</creatorcontrib><creatorcontrib>Liang, Xingkun</creatorcontrib><creatorcontrib>Zhao, Zehua</creatorcontrib><title>Evolution of local edge state braiding and spin topological transport characterization of Te-doped monolayer 1T′-MoS</title><title>Physical chemistry chemical physics : PCCP</title><description>We conducted first-principles calculations to investigate the dynamic braiding of local edge states and the spin topological transport mechanism in a strong topological MoS
1.75
Te
0.25
matrix. The presence of type-II Van Hove singularity in the middle of the
X
-
S
path indicates a strong cohesive interaction and a paring condensation mechanism within the matrix. The surface state data of MoS
1.75
Te
0.25
clearly demonstrate the characteristic features of strong regular loop braiding in spin transport. The spin Hall conductivity of the matrix was determined from the anisotropic characteristics of the spin Berry curvature. The phase transition of the spin Hall conductivity was evidenced by the positive sign of local spin polarization strength, primarily contributed by the d
z
2
orbital of Mo atoms, and the negative sign of spin polarization strength, mainly contributed by the p-p
x
orbitals of S atoms. Moreover, the inclusion of Te selectively tuned the spin transport efficiency of the d
z
2
and p
x
orbitals. Comprehensive braiding and readout of edge states can be achieved using an artificially designed MoS
1.75
Te
0.25
spintronic device. This 2D fractional braiding holds significant potential for applications in topological quantum computation.
Our study explores spin transport in a MoS
1.75
Te
0.25
matrix, and find two types of fractional braidings in surface states: "diamond" and "tropical fish", offering prospects for topological quantum computing.</description><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFj8FqQjEQRUNRqFY33RfmB16bEH3WdVHcuOrby5jEZyRmwiQV7Krf1E_yS0TQdunqXjiXA1eIZyVfldTTN6tNknpc1-sH0VOjWldT-T7q_PVJ_Sj6Oe-klGqsdE8cZgcKX8VTBNpAIIMBnG0d5ILFwZrRWx9bwGghJx-hUKJArb8MC2PMibiA2SKjKY79N95kjassJWdhT5ECHh2Dak4_v9WSPgeiu8GQ3fCaT-JlPms-FhVns0rs98jH1f8ZfY-fASRlUCI</recordid><startdate>20231108</startdate><enddate>20231108</enddate><creator>Cheng, Qian</creator><creator>Yan, Zhengxin</creator><creator>Song, Wei</creator><creator>Kong, Juntao</creator><creator>Li, Dongxin</creator><creator>Xu, Wuyue</creator><creator>Xie, You</creator><creator>Liang, Xingkun</creator><creator>Zhao, Zehua</creator><scope/></search><sort><creationdate>20231108</creationdate><title>Evolution of local edge state braiding and spin topological transport characterization of Te-doped monolayer 1T′-MoS</title><author>Cheng, Qian ; Yan, Zhengxin ; Song, Wei ; Kong, Juntao ; Li, Dongxin ; Xu, Wuyue ; Xie, You ; Liang, Xingkun ; Zhao, Zehua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_d3cp03566b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Qian</creatorcontrib><creatorcontrib>Yan, Zhengxin</creatorcontrib><creatorcontrib>Song, Wei</creatorcontrib><creatorcontrib>Kong, Juntao</creatorcontrib><creatorcontrib>Li, Dongxin</creatorcontrib><creatorcontrib>Xu, Wuyue</creatorcontrib><creatorcontrib>Xie, You</creatorcontrib><creatorcontrib>Liang, Xingkun</creatorcontrib><creatorcontrib>Zhao, Zehua</creatorcontrib><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Qian</au><au>Yan, Zhengxin</au><au>Song, Wei</au><au>Kong, Juntao</au><au>Li, Dongxin</au><au>Xu, Wuyue</au><au>Xie, You</au><au>Liang, Xingkun</au><au>Zhao, Zehua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of local edge state braiding and spin topological transport characterization of Te-doped monolayer 1T′-MoS</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2023-11-08</date><risdate>2023</risdate><volume>25</volume><issue>43</issue><spage>29633</spage><epage>2964</epage><pages>29633-2964</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>We conducted first-principles calculations to investigate the dynamic braiding of local edge states and the spin topological transport mechanism in a strong topological MoS
1.75
Te
0.25
matrix. The presence of type-II Van Hove singularity in the middle of the
X
-
S
path indicates a strong cohesive interaction and a paring condensation mechanism within the matrix. The surface state data of MoS
1.75
Te
0.25
clearly demonstrate the characteristic features of strong regular loop braiding in spin transport. The spin Hall conductivity of the matrix was determined from the anisotropic characteristics of the spin Berry curvature. The phase transition of the spin Hall conductivity was evidenced by the positive sign of local spin polarization strength, primarily contributed by the d
z
2
orbital of Mo atoms, and the negative sign of spin polarization strength, mainly contributed by the p-p
x
orbitals of S atoms. Moreover, the inclusion of Te selectively tuned the spin transport efficiency of the d
z
2
and p
x
orbitals. Comprehensive braiding and readout of edge states can be achieved using an artificially designed MoS
1.75
Te
0.25
spintronic device. This 2D fractional braiding holds significant potential for applications in topological quantum computation.
Our study explores spin transport in a MoS
1.75
Te
0.25
matrix, and find two types of fractional braidings in surface states: "diamond" and "tropical fish", offering prospects for topological quantum computing.</abstract><doi>10.1039/d3cp03566b</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2023-11, Vol.25 (43), p.29633-2964 |
issn | 1463-9076 1463-9084 |
language | |
recordid | cdi_rsc_primary_d3cp03566b |
source | Royal Society Of Chemistry Journals; Alma/SFX Local Collection |
title | Evolution of local edge state braiding and spin topological transport characterization of Te-doped monolayer 1T′-MoS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-29T23%3A38%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20local%20edge%20state%20braiding%20and%20spin%20topological%20transport%20characterization%20of%20Te-doped%20monolayer%201T%E2%80%B2-MoS&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Cheng,%20Qian&rft.date=2023-11-08&rft.volume=25&rft.issue=43&rft.spage=29633&rft.epage=2964&rft.pages=29633-2964&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d3cp03566b&rft_dat=%3Crsc%3Ed3cp03566b%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |