First-principles study on small polaron and Li diffusion in layered LiCoO
Li-ion conductivity is one of the essential properties that influences the performance of cathode materials for Li-ion batteries. Here, using density functional theory, we investigate the polaron stability and its effect on the Li-ion diffusion in layered LiCoO 2 with various magnetic orderings. We...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2023-10, Vol.25 (4), p.27848-27853 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 27853 |
---|---|
container_issue | 4 |
container_start_page | 27848 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 25 |
creator | Ahn, Seryung Kim, Jiyeon Kim, Bongjae Kim, Sooran |
description | Li-ion conductivity is one of the essential properties that influences the performance of cathode materials for Li-ion batteries. Here, using density functional theory, we investigate the polaron stability and its effect on the Li-ion diffusion in layered LiCoO
2
with various magnetic orderings. We show that the local magnetism promotes the localized Co
4+
polaron with the Li-diffusion barrier of ∼0.34 eV. While the Li-ion diffuses, the polaron migrates in the opposite direction to the Li movement. In the non-magnetic structure, on the other hand, the polaron does not form, and the Li diffusion barrier is lowered to 0.21 eV. Although the presence of the polaron raises the diffusion barrier, the magnetically ordered structures are energetically more stable during the migration than the non-magnetic case. Thus, our work advocates the hole polaron migration scenario for Li-ion diffusion. We further demonstrate that the strong electron correlation of Co ions plays an essential role in stabilizing the Co
4+
polaron.
Li-ion diffusion with polaron is energetically favored in Li
x
CoO
2
despite polaron raising the barrier of Li migration. |
doi_str_mv | 10.1039/d3cp02998k |
format | Article |
fullrecord | <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_d3cp02998k</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d3cp02998k</sourcerecordid><originalsourceid>FETCH-rsc_primary_d3cp02998k3</originalsourceid><addsrcrecordid>eNqFjj0LwjAYhIMoWD8Wd-H9A9XE1NrMRVEQXNxLaFKIpmnI2w7991YQHZ3u7jk4jpAVoxtGudgqXnq6EyJ7jkjEkpTHgmbJ-OsP6ZTMEB-UUrZnPCKXkwnYxj4YVxpvNQK2neqhcYC1tBZ8Y2UYknQKrgaUqaoOzQCMAyt7HfSb581tQSaVtKiXH52T9el4z89xwLIY9msZ-uL3j__rXyDYPjM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>First-principles study on small polaron and Li diffusion in layered LiCoO</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Ahn, Seryung ; Kim, Jiyeon ; Kim, Bongjae ; Kim, Sooran</creator><creatorcontrib>Ahn, Seryung ; Kim, Jiyeon ; Kim, Bongjae ; Kim, Sooran</creatorcontrib><description>Li-ion conductivity is one of the essential properties that influences the performance of cathode materials for Li-ion batteries. Here, using density functional theory, we investigate the polaron stability and its effect on the Li-ion diffusion in layered LiCoO
2
with various magnetic orderings. We show that the local magnetism promotes the localized Co
4+
polaron with the Li-diffusion barrier of ∼0.34 eV. While the Li-ion diffuses, the polaron migrates in the opposite direction to the Li movement. In the non-magnetic structure, on the other hand, the polaron does not form, and the Li diffusion barrier is lowered to 0.21 eV. Although the presence of the polaron raises the diffusion barrier, the magnetically ordered structures are energetically more stable during the migration than the non-magnetic case. Thus, our work advocates the hole polaron migration scenario for Li-ion diffusion. We further demonstrate that the strong electron correlation of Co ions plays an essential role in stabilizing the Co
4+
polaron.
Li-ion diffusion with polaron is energetically favored in Li
x
CoO
2
despite polaron raising the barrier of Li migration.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d3cp02998k</identifier><ispartof>Physical chemistry chemical physics : PCCP, 2023-10, Vol.25 (4), p.27848-27853</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Ahn, Seryung</creatorcontrib><creatorcontrib>Kim, Jiyeon</creatorcontrib><creatorcontrib>Kim, Bongjae</creatorcontrib><creatorcontrib>Kim, Sooran</creatorcontrib><title>First-principles study on small polaron and Li diffusion in layered LiCoO</title><title>Physical chemistry chemical physics : PCCP</title><description>Li-ion conductivity is one of the essential properties that influences the performance of cathode materials for Li-ion batteries. Here, using density functional theory, we investigate the polaron stability and its effect on the Li-ion diffusion in layered LiCoO
2
with various magnetic orderings. We show that the local magnetism promotes the localized Co
4+
polaron with the Li-diffusion barrier of ∼0.34 eV. While the Li-ion diffuses, the polaron migrates in the opposite direction to the Li movement. In the non-magnetic structure, on the other hand, the polaron does not form, and the Li diffusion barrier is lowered to 0.21 eV. Although the presence of the polaron raises the diffusion barrier, the magnetically ordered structures are energetically more stable during the migration than the non-magnetic case. Thus, our work advocates the hole polaron migration scenario for Li-ion diffusion. We further demonstrate that the strong electron correlation of Co ions plays an essential role in stabilizing the Co
4+
polaron.
Li-ion diffusion with polaron is energetically favored in Li
x
CoO
2
despite polaron raising the barrier of Li migration.</description><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFjj0LwjAYhIMoWD8Wd-H9A9XE1NrMRVEQXNxLaFKIpmnI2w7991YQHZ3u7jk4jpAVoxtGudgqXnq6EyJ7jkjEkpTHgmbJ-OsP6ZTMEB-UUrZnPCKXkwnYxj4YVxpvNQK2neqhcYC1tBZ8Y2UYknQKrgaUqaoOzQCMAyt7HfSb581tQSaVtKiXH52T9el4z89xwLIY9msZ-uL3j__rXyDYPjM</recordid><startdate>20231018</startdate><enddate>20231018</enddate><creator>Ahn, Seryung</creator><creator>Kim, Jiyeon</creator><creator>Kim, Bongjae</creator><creator>Kim, Sooran</creator><scope/></search><sort><creationdate>20231018</creationdate><title>First-principles study on small polaron and Li diffusion in layered LiCoO</title><author>Ahn, Seryung ; Kim, Jiyeon ; Kim, Bongjae ; Kim, Sooran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_d3cp02998k3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahn, Seryung</creatorcontrib><creatorcontrib>Kim, Jiyeon</creatorcontrib><creatorcontrib>Kim, Bongjae</creatorcontrib><creatorcontrib>Kim, Sooran</creatorcontrib><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahn, Seryung</au><au>Kim, Jiyeon</au><au>Kim, Bongjae</au><au>Kim, Sooran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First-principles study on small polaron and Li diffusion in layered LiCoO</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2023-10-18</date><risdate>2023</risdate><volume>25</volume><issue>4</issue><spage>27848</spage><epage>27853</epage><pages>27848-27853</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Li-ion conductivity is one of the essential properties that influences the performance of cathode materials for Li-ion batteries. Here, using density functional theory, we investigate the polaron stability and its effect on the Li-ion diffusion in layered LiCoO
2
with various magnetic orderings. We show that the local magnetism promotes the localized Co
4+
polaron with the Li-diffusion barrier of ∼0.34 eV. While the Li-ion diffuses, the polaron migrates in the opposite direction to the Li movement. In the non-magnetic structure, on the other hand, the polaron does not form, and the Li diffusion barrier is lowered to 0.21 eV. Although the presence of the polaron raises the diffusion barrier, the magnetically ordered structures are energetically more stable during the migration than the non-magnetic case. Thus, our work advocates the hole polaron migration scenario for Li-ion diffusion. We further demonstrate that the strong electron correlation of Co ions plays an essential role in stabilizing the Co
4+
polaron.
Li-ion diffusion with polaron is energetically favored in Li
x
CoO
2
despite polaron raising the barrier of Li migration.</abstract><doi>10.1039/d3cp02998k</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2023-10, Vol.25 (4), p.27848-27853 |
issn | 1463-9076 1463-9084 |
language | |
recordid | cdi_rsc_primary_d3cp02998k |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
title | First-principles study on small polaron and Li diffusion in layered LiCoO |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T02%3A23%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First-principles%20study%20on%20small%20polaron%20and%20Li%20diffusion%20in%20layered%20LiCoO&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Ahn,%20Seryung&rft.date=2023-10-18&rft.volume=25&rft.issue=4&rft.spage=27848&rft.epage=27853&rft.pages=27848-27853&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d3cp02998k&rft_dat=%3Crsc%3Ed3cp02998k%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |