First-principles study on small polaron and Li diffusion in layered LiCoO

Li-ion conductivity is one of the essential properties that influences the performance of cathode materials for Li-ion batteries. Here, using density functional theory, we investigate the polaron stability and its effect on the Li-ion diffusion in layered LiCoO 2 with various magnetic orderings. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2023-10, Vol.25 (4), p.27848-27853
Hauptverfasser: Ahn, Seryung, Kim, Jiyeon, Kim, Bongjae, Kim, Sooran
Format: Artikel
Sprache:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27853
container_issue 4
container_start_page 27848
container_title Physical chemistry chemical physics : PCCP
container_volume 25
creator Ahn, Seryung
Kim, Jiyeon
Kim, Bongjae
Kim, Sooran
description Li-ion conductivity is one of the essential properties that influences the performance of cathode materials for Li-ion batteries. Here, using density functional theory, we investigate the polaron stability and its effect on the Li-ion diffusion in layered LiCoO 2 with various magnetic orderings. We show that the local magnetism promotes the localized Co 4+ polaron with the Li-diffusion barrier of ∼0.34 eV. While the Li-ion diffuses, the polaron migrates in the opposite direction to the Li movement. In the non-magnetic structure, on the other hand, the polaron does not form, and the Li diffusion barrier is lowered to 0.21 eV. Although the presence of the polaron raises the diffusion barrier, the magnetically ordered structures are energetically more stable during the migration than the non-magnetic case. Thus, our work advocates the hole polaron migration scenario for Li-ion diffusion. We further demonstrate that the strong electron correlation of Co ions plays an essential role in stabilizing the Co 4+ polaron. Li-ion diffusion with polaron is energetically favored in Li x CoO 2 despite polaron raising the barrier of Li migration.
doi_str_mv 10.1039/d3cp02998k
format Article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_d3cp02998k</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d3cp02998k</sourcerecordid><originalsourceid>FETCH-rsc_primary_d3cp02998k3</originalsourceid><addsrcrecordid>eNqFjj0LwjAYhIMoWD8Wd-H9A9XE1NrMRVEQXNxLaFKIpmnI2w7991YQHZ3u7jk4jpAVoxtGudgqXnq6EyJ7jkjEkpTHgmbJ-OsP6ZTMEB-UUrZnPCKXkwnYxj4YVxpvNQK2neqhcYC1tBZ8Y2UYknQKrgaUqaoOzQCMAyt7HfSb581tQSaVtKiXH52T9el4z89xwLIY9msZ-uL3j__rXyDYPjM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>First-principles study on small polaron and Li diffusion in layered LiCoO</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Ahn, Seryung ; Kim, Jiyeon ; Kim, Bongjae ; Kim, Sooran</creator><creatorcontrib>Ahn, Seryung ; Kim, Jiyeon ; Kim, Bongjae ; Kim, Sooran</creatorcontrib><description>Li-ion conductivity is one of the essential properties that influences the performance of cathode materials for Li-ion batteries. Here, using density functional theory, we investigate the polaron stability and its effect on the Li-ion diffusion in layered LiCoO 2 with various magnetic orderings. We show that the local magnetism promotes the localized Co 4+ polaron with the Li-diffusion barrier of ∼0.34 eV. While the Li-ion diffuses, the polaron migrates in the opposite direction to the Li movement. In the non-magnetic structure, on the other hand, the polaron does not form, and the Li diffusion barrier is lowered to 0.21 eV. Although the presence of the polaron raises the diffusion barrier, the magnetically ordered structures are energetically more stable during the migration than the non-magnetic case. Thus, our work advocates the hole polaron migration scenario for Li-ion diffusion. We further demonstrate that the strong electron correlation of Co ions plays an essential role in stabilizing the Co 4+ polaron. Li-ion diffusion with polaron is energetically favored in Li x CoO 2 despite polaron raising the barrier of Li migration.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d3cp02998k</identifier><ispartof>Physical chemistry chemical physics : PCCP, 2023-10, Vol.25 (4), p.27848-27853</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Ahn, Seryung</creatorcontrib><creatorcontrib>Kim, Jiyeon</creatorcontrib><creatorcontrib>Kim, Bongjae</creatorcontrib><creatorcontrib>Kim, Sooran</creatorcontrib><title>First-principles study on small polaron and Li diffusion in layered LiCoO</title><title>Physical chemistry chemical physics : PCCP</title><description>Li-ion conductivity is one of the essential properties that influences the performance of cathode materials for Li-ion batteries. Here, using density functional theory, we investigate the polaron stability and its effect on the Li-ion diffusion in layered LiCoO 2 with various magnetic orderings. We show that the local magnetism promotes the localized Co 4+ polaron with the Li-diffusion barrier of ∼0.34 eV. While the Li-ion diffuses, the polaron migrates in the opposite direction to the Li movement. In the non-magnetic structure, on the other hand, the polaron does not form, and the Li diffusion barrier is lowered to 0.21 eV. Although the presence of the polaron raises the diffusion barrier, the magnetically ordered structures are energetically more stable during the migration than the non-magnetic case. Thus, our work advocates the hole polaron migration scenario for Li-ion diffusion. We further demonstrate that the strong electron correlation of Co ions plays an essential role in stabilizing the Co 4+ polaron. Li-ion diffusion with polaron is energetically favored in Li x CoO 2 despite polaron raising the barrier of Li migration.</description><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFjj0LwjAYhIMoWD8Wd-H9A9XE1NrMRVEQXNxLaFKIpmnI2w7991YQHZ3u7jk4jpAVoxtGudgqXnq6EyJ7jkjEkpTHgmbJ-OsP6ZTMEB-UUrZnPCKXkwnYxj4YVxpvNQK2neqhcYC1tBZ8Y2UYknQKrgaUqaoOzQCMAyt7HfSb581tQSaVtKiXH52T9el4z89xwLIY9msZ-uL3j__rXyDYPjM</recordid><startdate>20231018</startdate><enddate>20231018</enddate><creator>Ahn, Seryung</creator><creator>Kim, Jiyeon</creator><creator>Kim, Bongjae</creator><creator>Kim, Sooran</creator><scope/></search><sort><creationdate>20231018</creationdate><title>First-principles study on small polaron and Li diffusion in layered LiCoO</title><author>Ahn, Seryung ; Kim, Jiyeon ; Kim, Bongjae ; Kim, Sooran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_d3cp02998k3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahn, Seryung</creatorcontrib><creatorcontrib>Kim, Jiyeon</creatorcontrib><creatorcontrib>Kim, Bongjae</creatorcontrib><creatorcontrib>Kim, Sooran</creatorcontrib><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahn, Seryung</au><au>Kim, Jiyeon</au><au>Kim, Bongjae</au><au>Kim, Sooran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First-principles study on small polaron and Li diffusion in layered LiCoO</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2023-10-18</date><risdate>2023</risdate><volume>25</volume><issue>4</issue><spage>27848</spage><epage>27853</epage><pages>27848-27853</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Li-ion conductivity is one of the essential properties that influences the performance of cathode materials for Li-ion batteries. Here, using density functional theory, we investigate the polaron stability and its effect on the Li-ion diffusion in layered LiCoO 2 with various magnetic orderings. We show that the local magnetism promotes the localized Co 4+ polaron with the Li-diffusion barrier of ∼0.34 eV. While the Li-ion diffuses, the polaron migrates in the opposite direction to the Li movement. In the non-magnetic structure, on the other hand, the polaron does not form, and the Li diffusion barrier is lowered to 0.21 eV. Although the presence of the polaron raises the diffusion barrier, the magnetically ordered structures are energetically more stable during the migration than the non-magnetic case. Thus, our work advocates the hole polaron migration scenario for Li-ion diffusion. We further demonstrate that the strong electron correlation of Co ions plays an essential role in stabilizing the Co 4+ polaron. Li-ion diffusion with polaron is energetically favored in Li x CoO 2 despite polaron raising the barrier of Li migration.</abstract><doi>10.1039/d3cp02998k</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2023-10, Vol.25 (4), p.27848-27853
issn 1463-9076
1463-9084
language
recordid cdi_rsc_primary_d3cp02998k
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
title First-principles study on small polaron and Li diffusion in layered LiCoO
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T02%3A23%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First-principles%20study%20on%20small%20polaron%20and%20Li%20diffusion%20in%20layered%20LiCoO&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Ahn,%20Seryung&rft.date=2023-10-18&rft.volume=25&rft.issue=4&rft.spage=27848&rft.epage=27853&rft.pages=27848-27853&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d3cp02998k&rft_dat=%3Crsc%3Ed3cp02998k%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true