Molecular engineering guided dielectric resonance tuning in derived carbon materials

Dielectric resonance tuning could improve the electromagnetic wave absorption (EMA) properties of materials; however, current strategies for dielectric resonance tuning are scarcely reported. Herein, we proposed a molecular engineering concept to obtain derived carbon materials via controlling the n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2022-09, Vol.1 (34), p.12257-12265
Hauptverfasser: Shi, Jiaoyan, Zhuang, Qiu, Wu, Lipeng, Guo, Ronghui, Huang, Ling, Li, Weijin, Wu, Fan, Xie, Aming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12265
container_issue 34
container_start_page 12257
container_title Journal of materials chemistry. C, Materials for optical and electronic devices
container_volume 1
creator Shi, Jiaoyan
Zhuang, Qiu
Wu, Lipeng
Guo, Ronghui
Huang, Ling
Li, Weijin
Wu, Fan
Xie, Aming
description Dielectric resonance tuning could improve the electromagnetic wave absorption (EMA) properties of materials; however, current strategies for dielectric resonance tuning are scarcely reported. Herein, we proposed a molecular engineering concept to obtain derived carbon materials via controlling the number of aromatic rings and steric/geometric structure of methylene inserted aromatic polymers (MAPs). The derived carbon materials are composed of repeat units, existing analogous dipole polarization, and further creating dielectric resonance loss, making the resultant MAP-derived carbon materials (MAPCs) demonstrate outstanding EMA performance. Particularly, the effective absorption bandwidth of MAPC-6 can reach 7.1 GHz, which is superior to that of state-of-the-art carbon materials. This work demonstrates the EMA ability can be significantly optimized through the molecular engineering structural design concept, paving the way to understand and tune the dielectric resonance in carbon materials, and offering promising EMA application perspectives. Dielectric resonance tuning could improve the electromagnetic wave absorption (EMA) properties of materials; however, current strategies for dielectric resonance tuning are scarcely reported.
doi_str_mv 10.1039/d2tc02628g
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d2tc02628g</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2708739907</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-2faa3ff7b1640a50bd6a6ecd843552c19e02a11539132a9beac0ba841bb9a61c3</originalsourceid><addsrcrecordid>eNpF0E1LAzEQBuAgCpbai3ch4E1YzcduNjlKtVWoeKnnZfKxS0qbrcmu4L83tVJzmTDzMAMvQteU3FPC1YNlgyFMMNmdoQkjFSnqipfnpz8Tl2iW0obkJ6mQQk3Q-q3fOjNuIWIXOh-ciz50uBu9dRZb7_J0iN7g6FIfIBiHhzEciA_YZvyVmYGo-4B3MOQGbNMVumhzcbO_OkUfi-f1_KVYvS9f54-rwjBJh4K1ALxta01FSaAi2goQzlhZ8qpihipHGFBacUU5A6UdGKJBllRrBYIaPkW3x7372H-OLg3Nph9jyCcbVhNZc6VIndXdUZnYpxRd2-yj30H8bihpDsE1T2w9_w1umfHNEcdkTu4_WP4DlCFrCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2708739907</pqid></control><display><type>article</type><title>Molecular engineering guided dielectric resonance tuning in derived carbon materials</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Shi, Jiaoyan ; Zhuang, Qiu ; Wu, Lipeng ; Guo, Ronghui ; Huang, Ling ; Li, Weijin ; Wu, Fan ; Xie, Aming</creator><creatorcontrib>Shi, Jiaoyan ; Zhuang, Qiu ; Wu, Lipeng ; Guo, Ronghui ; Huang, Ling ; Li, Weijin ; Wu, Fan ; Xie, Aming</creatorcontrib><description>Dielectric resonance tuning could improve the electromagnetic wave absorption (EMA) properties of materials; however, current strategies for dielectric resonance tuning are scarcely reported. Herein, we proposed a molecular engineering concept to obtain derived carbon materials via controlling the number of aromatic rings and steric/geometric structure of methylene inserted aromatic polymers (MAPs). The derived carbon materials are composed of repeat units, existing analogous dipole polarization, and further creating dielectric resonance loss, making the resultant MAP-derived carbon materials (MAPCs) demonstrate outstanding EMA performance. Particularly, the effective absorption bandwidth of MAPC-6 can reach 7.1 GHz, which is superior to that of state-of-the-art carbon materials. This work demonstrates the EMA ability can be significantly optimized through the molecular engineering structural design concept, paving the way to understand and tune the dielectric resonance in carbon materials, and offering promising EMA application perspectives. Dielectric resonance tuning could improve the electromagnetic wave absorption (EMA) properties of materials; however, current strategies for dielectric resonance tuning are scarcely reported.</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/d2tc02628g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Absorption ; Aromatic compounds ; Carbon ; Dipoles ; Electromagnetic radiation ; Material properties ; Resonance ; Structural design ; Tuning</subject><ispartof>Journal of materials chemistry. C, Materials for optical and electronic devices, 2022-09, Vol.1 (34), p.12257-12265</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-2faa3ff7b1640a50bd6a6ecd843552c19e02a11539132a9beac0ba841bb9a61c3</citedby><cites>FETCH-LOGICAL-c281t-2faa3ff7b1640a50bd6a6ecd843552c19e02a11539132a9beac0ba841bb9a61c3</cites><orcidid>0000-0002-0468-2868 ; 0000-0001-5381-0689</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Shi, Jiaoyan</creatorcontrib><creatorcontrib>Zhuang, Qiu</creatorcontrib><creatorcontrib>Wu, Lipeng</creatorcontrib><creatorcontrib>Guo, Ronghui</creatorcontrib><creatorcontrib>Huang, Ling</creatorcontrib><creatorcontrib>Li, Weijin</creatorcontrib><creatorcontrib>Wu, Fan</creatorcontrib><creatorcontrib>Xie, Aming</creatorcontrib><title>Molecular engineering guided dielectric resonance tuning in derived carbon materials</title><title>Journal of materials chemistry. C, Materials for optical and electronic devices</title><description>Dielectric resonance tuning could improve the electromagnetic wave absorption (EMA) properties of materials; however, current strategies for dielectric resonance tuning are scarcely reported. Herein, we proposed a molecular engineering concept to obtain derived carbon materials via controlling the number of aromatic rings and steric/geometric structure of methylene inserted aromatic polymers (MAPs). The derived carbon materials are composed of repeat units, existing analogous dipole polarization, and further creating dielectric resonance loss, making the resultant MAP-derived carbon materials (MAPCs) demonstrate outstanding EMA performance. Particularly, the effective absorption bandwidth of MAPC-6 can reach 7.1 GHz, which is superior to that of state-of-the-art carbon materials. This work demonstrates the EMA ability can be significantly optimized through the molecular engineering structural design concept, paving the way to understand and tune the dielectric resonance in carbon materials, and offering promising EMA application perspectives. Dielectric resonance tuning could improve the electromagnetic wave absorption (EMA) properties of materials; however, current strategies for dielectric resonance tuning are scarcely reported.</description><subject>Absorption</subject><subject>Aromatic compounds</subject><subject>Carbon</subject><subject>Dipoles</subject><subject>Electromagnetic radiation</subject><subject>Material properties</subject><subject>Resonance</subject><subject>Structural design</subject><subject>Tuning</subject><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpF0E1LAzEQBuAgCpbai3ch4E1YzcduNjlKtVWoeKnnZfKxS0qbrcmu4L83tVJzmTDzMAMvQteU3FPC1YNlgyFMMNmdoQkjFSnqipfnpz8Tl2iW0obkJ6mQQk3Q-q3fOjNuIWIXOh-ciz50uBu9dRZb7_J0iN7g6FIfIBiHhzEciA_YZvyVmYGo-4B3MOQGbNMVumhzcbO_OkUfi-f1_KVYvS9f54-rwjBJh4K1ALxta01FSaAi2goQzlhZ8qpihipHGFBacUU5A6UdGKJBllRrBYIaPkW3x7372H-OLg3Nph9jyCcbVhNZc6VIndXdUZnYpxRd2-yj30H8bihpDsE1T2w9_w1umfHNEcdkTu4_WP4DlCFrCQ</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Shi, Jiaoyan</creator><creator>Zhuang, Qiu</creator><creator>Wu, Lipeng</creator><creator>Guo, Ronghui</creator><creator>Huang, Ling</creator><creator>Li, Weijin</creator><creator>Wu, Fan</creator><creator>Xie, Aming</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0468-2868</orcidid><orcidid>https://orcid.org/0000-0001-5381-0689</orcidid></search><sort><creationdate>20220901</creationdate><title>Molecular engineering guided dielectric resonance tuning in derived carbon materials</title><author>Shi, Jiaoyan ; Zhuang, Qiu ; Wu, Lipeng ; Guo, Ronghui ; Huang, Ling ; Li, Weijin ; Wu, Fan ; Xie, Aming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-2faa3ff7b1640a50bd6a6ecd843552c19e02a11539132a9beac0ba841bb9a61c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Absorption</topic><topic>Aromatic compounds</topic><topic>Carbon</topic><topic>Dipoles</topic><topic>Electromagnetic radiation</topic><topic>Material properties</topic><topic>Resonance</topic><topic>Structural design</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Jiaoyan</creatorcontrib><creatorcontrib>Zhuang, Qiu</creatorcontrib><creatorcontrib>Wu, Lipeng</creatorcontrib><creatorcontrib>Guo, Ronghui</creatorcontrib><creatorcontrib>Huang, Ling</creatorcontrib><creatorcontrib>Li, Weijin</creatorcontrib><creatorcontrib>Wu, Fan</creatorcontrib><creatorcontrib>Xie, Aming</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Jiaoyan</au><au>Zhuang, Qiu</au><au>Wu, Lipeng</au><au>Guo, Ronghui</au><au>Huang, Ling</au><au>Li, Weijin</au><au>Wu, Fan</au><au>Xie, Aming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular engineering guided dielectric resonance tuning in derived carbon materials</atitle><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>1</volume><issue>34</issue><spage>12257</spage><epage>12265</epage><pages>12257-12265</pages><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>Dielectric resonance tuning could improve the electromagnetic wave absorption (EMA) properties of materials; however, current strategies for dielectric resonance tuning are scarcely reported. Herein, we proposed a molecular engineering concept to obtain derived carbon materials via controlling the number of aromatic rings and steric/geometric structure of methylene inserted aromatic polymers (MAPs). The derived carbon materials are composed of repeat units, existing analogous dipole polarization, and further creating dielectric resonance loss, making the resultant MAP-derived carbon materials (MAPCs) demonstrate outstanding EMA performance. Particularly, the effective absorption bandwidth of MAPC-6 can reach 7.1 GHz, which is superior to that of state-of-the-art carbon materials. This work demonstrates the EMA ability can be significantly optimized through the molecular engineering structural design concept, paving the way to understand and tune the dielectric resonance in carbon materials, and offering promising EMA application perspectives. Dielectric resonance tuning could improve the electromagnetic wave absorption (EMA) properties of materials; however, current strategies for dielectric resonance tuning are scarcely reported.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2tc02628g</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0468-2868</orcidid><orcidid>https://orcid.org/0000-0001-5381-0689</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7526
ispartof Journal of materials chemistry. C, Materials for optical and electronic devices, 2022-09, Vol.1 (34), p.12257-12265
issn 2050-7526
2050-7534
language eng
recordid cdi_rsc_primary_d2tc02628g
source Royal Society Of Chemistry Journals 2008-
subjects Absorption
Aromatic compounds
Carbon
Dipoles
Electromagnetic radiation
Material properties
Resonance
Structural design
Tuning
title Molecular engineering guided dielectric resonance tuning in derived carbon materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T18%3A56%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20engineering%20guided%20dielectric%20resonance%20tuning%20in%20derived%20carbon%20materials&rft.jtitle=Journal%20of%20materials%20chemistry.%20C,%20Materials%20for%20optical%20and%20electronic%20devices&rft.au=Shi,%20Jiaoyan&rft.date=2022-09-01&rft.volume=1&rft.issue=34&rft.spage=12257&rft.epage=12265&rft.pages=12257-12265&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/d2tc02628g&rft_dat=%3Cproquest_rsc_p%3E2708739907%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2708739907&rft_id=info:pmid/&rfr_iscdi=true