Sequential, low-temperature aqueous synthesis of Ag-In-S/Zn quantum dots staged cation exchange under biomineralization conditions
The development of high quality, non-toxic ( i.e. , heavy-metal-free), and functional quantum dots (QDs) via 'green and scalable synthesis routes is critical for realizing truly sustainable QD-based solutions to diverse technological challenges. Herein, we demonstrate the low-temperature all-aq...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2022-06, Vol.1 (24), p.4529-4545 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4545 |
---|---|
container_issue | 24 |
container_start_page | 4529 |
container_title | Journal of materials chemistry. B, Materials for biology and medicine |
container_volume | 1 |
creator | Ozdemir, Nur Koncuy Cline, Joseph P Sakizadeh, John Collins, Shannon M Brown, Angela C McIntosh, Steven Kiely, Christopher J Snyder, Mark A |
description | The development of high quality, non-toxic (
i.e.
, heavy-metal-free), and functional quantum dots (QDs)
via
'green and scalable synthesis routes is critical for realizing truly sustainable QD-based solutions to diverse technological challenges. Herein, we demonstrate the low-temperature all-aqueous-phase synthesis of silver indium sulfide/zinc (AIS/Zn) QDs with a process initiated by the biomineralization of highly crystalline indium sulfide nanocrystals, and followed by the sequential staging of Ag
+
cation exchange and Zn
2+
addition directly within the biomineralization media without any intermediate product purification. Therein, we exploit solution phase cation concentration, the duration of incubation in the presence of In
2
S
3
precursor nanocrystals, and the subsequent addition of Zn
2+
as facile handles under biomineralization conditions for controlling QD composition, tuning optical properties, and improving the photoluminescence quantum yield of the AIS/Zn product. We demonstrate how engineering biomineralization for the synthesis of intrinsically hydrophilic and thus readily functionalizable AIS/Zn QDs with a quantum yield of 18% offers a green' and non-toxic materials platform for targeted bioimaging in sensitive cellular systems. Ultimately, the decoupling of synthetic steps helps unravel the complexities of ion exchange-based synthesis within the biomineralization platform, enabling its adaptation for the sustainable synthesis of 'green', compositionally diverse QDs.
Choreographing nanocrystal biomineralization, cation exchange, and low-temperature annealing enables synthesis of 'green' functionalizable quantum dots suitable for bioimaging. |
doi_str_mv | 10.1039/d2tb00682k |
format | Article |
fullrecord | <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_d2tb00682k</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d2tb00682k</sourcerecordid><originalsourceid>FETCH-rsc_primary_d2tb00682k3</originalsourceid><addsrcrecordid>eNqFjzFPAkEUhDdEE4jQ2Ju8H-DK3p3gWRqjkRoKYkOW28exevcW9r2NYukv94xGS6aZSb7JJKPUeWauMlPcjl0ua2OmZf7aU4PcTIy-mWTlyV82y74aMb-YTmU2LYvrgfqc4z4hibfNJTThTQu2O4xWUkSwHQqJgQ8kW2TPEDZwV-sZ6fn4mWCfLElqwQXpSmJrdFBZ8YEA36utpRohkcMIax9aT91u4z9-ClUg578TD9XpxjaMo18_UxePD4v7Jx25Wu2ib208rP6_Fcf4FwDxVVo</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sequential, low-temperature aqueous synthesis of Ag-In-S/Zn quantum dots staged cation exchange under biomineralization conditions</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Ozdemir, Nur Koncuy ; Cline, Joseph P ; Sakizadeh, John ; Collins, Shannon M ; Brown, Angela C ; McIntosh, Steven ; Kiely, Christopher J ; Snyder, Mark A</creator><creatorcontrib>Ozdemir, Nur Koncuy ; Cline, Joseph P ; Sakizadeh, John ; Collins, Shannon M ; Brown, Angela C ; McIntosh, Steven ; Kiely, Christopher J ; Snyder, Mark A</creatorcontrib><description>The development of high quality, non-toxic (
i.e.
, heavy-metal-free), and functional quantum dots (QDs)
via
'green and scalable synthesis routes is critical for realizing truly sustainable QD-based solutions to diverse technological challenges. Herein, we demonstrate the low-temperature all-aqueous-phase synthesis of silver indium sulfide/zinc (AIS/Zn) QDs with a process initiated by the biomineralization of highly crystalline indium sulfide nanocrystals, and followed by the sequential staging of Ag
+
cation exchange and Zn
2+
addition directly within the biomineralization media without any intermediate product purification. Therein, we exploit solution phase cation concentration, the duration of incubation in the presence of In
2
S
3
precursor nanocrystals, and the subsequent addition of Zn
2+
as facile handles under biomineralization conditions for controlling QD composition, tuning optical properties, and improving the photoluminescence quantum yield of the AIS/Zn product. We demonstrate how engineering biomineralization for the synthesis of intrinsically hydrophilic and thus readily functionalizable AIS/Zn QDs with a quantum yield of 18% offers a green' and non-toxic materials platform for targeted bioimaging in sensitive cellular systems. Ultimately, the decoupling of synthetic steps helps unravel the complexities of ion exchange-based synthesis within the biomineralization platform, enabling its adaptation for the sustainable synthesis of 'green', compositionally diverse QDs.
Choreographing nanocrystal biomineralization, cation exchange, and low-temperature annealing enables synthesis of 'green' functionalizable quantum dots suitable for bioimaging.</description><identifier>ISSN: 2050-750X</identifier><identifier>EISSN: 2050-7518</identifier><identifier>DOI: 10.1039/d2tb00682k</identifier><ispartof>Journal of materials chemistry. B, Materials for biology and medicine, 2022-06, Vol.1 (24), p.4529-4545</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ozdemir, Nur Koncuy</creatorcontrib><creatorcontrib>Cline, Joseph P</creatorcontrib><creatorcontrib>Sakizadeh, John</creatorcontrib><creatorcontrib>Collins, Shannon M</creatorcontrib><creatorcontrib>Brown, Angela C</creatorcontrib><creatorcontrib>McIntosh, Steven</creatorcontrib><creatorcontrib>Kiely, Christopher J</creatorcontrib><creatorcontrib>Snyder, Mark A</creatorcontrib><title>Sequential, low-temperature aqueous synthesis of Ag-In-S/Zn quantum dots staged cation exchange under biomineralization conditions</title><title>Journal of materials chemistry. B, Materials for biology and medicine</title><description>The development of high quality, non-toxic (
i.e.
, heavy-metal-free), and functional quantum dots (QDs)
via
'green and scalable synthesis routes is critical for realizing truly sustainable QD-based solutions to diverse technological challenges. Herein, we demonstrate the low-temperature all-aqueous-phase synthesis of silver indium sulfide/zinc (AIS/Zn) QDs with a process initiated by the biomineralization of highly crystalline indium sulfide nanocrystals, and followed by the sequential staging of Ag
+
cation exchange and Zn
2+
addition directly within the biomineralization media without any intermediate product purification. Therein, we exploit solution phase cation concentration, the duration of incubation in the presence of In
2
S
3
precursor nanocrystals, and the subsequent addition of Zn
2+
as facile handles under biomineralization conditions for controlling QD composition, tuning optical properties, and improving the photoluminescence quantum yield of the AIS/Zn product. We demonstrate how engineering biomineralization for the synthesis of intrinsically hydrophilic and thus readily functionalizable AIS/Zn QDs with a quantum yield of 18% offers a green' and non-toxic materials platform for targeted bioimaging in sensitive cellular systems. Ultimately, the decoupling of synthetic steps helps unravel the complexities of ion exchange-based synthesis within the biomineralization platform, enabling its adaptation for the sustainable synthesis of 'green', compositionally diverse QDs.
Choreographing nanocrystal biomineralization, cation exchange, and low-temperature annealing enables synthesis of 'green' functionalizable quantum dots suitable for bioimaging.</description><issn>2050-750X</issn><issn>2050-7518</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFjzFPAkEUhDdEE4jQ2Ju8H-DK3p3gWRqjkRoKYkOW28exevcW9r2NYukv94xGS6aZSb7JJKPUeWauMlPcjl0ua2OmZf7aU4PcTIy-mWTlyV82y74aMb-YTmU2LYvrgfqc4z4hibfNJTThTQu2O4xWUkSwHQqJgQ8kW2TPEDZwV-sZ6fn4mWCfLElqwQXpSmJrdFBZ8YEA36utpRohkcMIax9aT91u4z9-ClUg578TD9XpxjaMo18_UxePD4v7Jx25Wu2ib208rP6_Fcf4FwDxVVo</recordid><startdate>20220622</startdate><enddate>20220622</enddate><creator>Ozdemir, Nur Koncuy</creator><creator>Cline, Joseph P</creator><creator>Sakizadeh, John</creator><creator>Collins, Shannon M</creator><creator>Brown, Angela C</creator><creator>McIntosh, Steven</creator><creator>Kiely, Christopher J</creator><creator>Snyder, Mark A</creator><scope/></search><sort><creationdate>20220622</creationdate><title>Sequential, low-temperature aqueous synthesis of Ag-In-S/Zn quantum dots staged cation exchange under biomineralization conditions</title><author>Ozdemir, Nur Koncuy ; Cline, Joseph P ; Sakizadeh, John ; Collins, Shannon M ; Brown, Angela C ; McIntosh, Steven ; Kiely, Christopher J ; Snyder, Mark A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_d2tb00682k3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2022</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Ozdemir, Nur Koncuy</creatorcontrib><creatorcontrib>Cline, Joseph P</creatorcontrib><creatorcontrib>Sakizadeh, John</creatorcontrib><creatorcontrib>Collins, Shannon M</creatorcontrib><creatorcontrib>Brown, Angela C</creatorcontrib><creatorcontrib>McIntosh, Steven</creatorcontrib><creatorcontrib>Kiely, Christopher J</creatorcontrib><creatorcontrib>Snyder, Mark A</creatorcontrib><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ozdemir, Nur Koncuy</au><au>Cline, Joseph P</au><au>Sakizadeh, John</au><au>Collins, Shannon M</au><au>Brown, Angela C</au><au>McIntosh, Steven</au><au>Kiely, Christopher J</au><au>Snyder, Mark A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sequential, low-temperature aqueous synthesis of Ag-In-S/Zn quantum dots staged cation exchange under biomineralization conditions</atitle><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle><date>2022-06-22</date><risdate>2022</risdate><volume>1</volume><issue>24</issue><spage>4529</spage><epage>4545</epage><pages>4529-4545</pages><issn>2050-750X</issn><eissn>2050-7518</eissn><abstract>The development of high quality, non-toxic (
i.e.
, heavy-metal-free), and functional quantum dots (QDs)
via
'green and scalable synthesis routes is critical for realizing truly sustainable QD-based solutions to diverse technological challenges. Herein, we demonstrate the low-temperature all-aqueous-phase synthesis of silver indium sulfide/zinc (AIS/Zn) QDs with a process initiated by the biomineralization of highly crystalline indium sulfide nanocrystals, and followed by the sequential staging of Ag
+
cation exchange and Zn
2+
addition directly within the biomineralization media without any intermediate product purification. Therein, we exploit solution phase cation concentration, the duration of incubation in the presence of In
2
S
3
precursor nanocrystals, and the subsequent addition of Zn
2+
as facile handles under biomineralization conditions for controlling QD composition, tuning optical properties, and improving the photoluminescence quantum yield of the AIS/Zn product. We demonstrate how engineering biomineralization for the synthesis of intrinsically hydrophilic and thus readily functionalizable AIS/Zn QDs with a quantum yield of 18% offers a green' and non-toxic materials platform for targeted bioimaging in sensitive cellular systems. Ultimately, the decoupling of synthetic steps helps unravel the complexities of ion exchange-based synthesis within the biomineralization platform, enabling its adaptation for the sustainable synthesis of 'green', compositionally diverse QDs.
Choreographing nanocrystal biomineralization, cation exchange, and low-temperature annealing enables synthesis of 'green' functionalizable quantum dots suitable for bioimaging.</abstract><doi>10.1039/d2tb00682k</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-750X |
ispartof | Journal of materials chemistry. B, Materials for biology and medicine, 2022-06, Vol.1 (24), p.4529-4545 |
issn | 2050-750X 2050-7518 |
language | |
recordid | cdi_rsc_primary_d2tb00682k |
source | Royal Society Of Chemistry Journals 2008- |
title | Sequential, low-temperature aqueous synthesis of Ag-In-S/Zn quantum dots staged cation exchange under biomineralization conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A32%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sequential,%20low-temperature%20aqueous%20synthesis%20of%20Ag-In-S/Zn%20quantum%20dots%20staged%20cation%20exchange%20under%20biomineralization%20conditions&rft.jtitle=Journal%20of%20materials%20chemistry.%20B,%20Materials%20for%20biology%20and%20medicine&rft.au=Ozdemir,%20Nur%20Koncuy&rft.date=2022-06-22&rft.volume=1&rft.issue=24&rft.spage=4529&rft.epage=4545&rft.pages=4529-4545&rft.issn=2050-750X&rft.eissn=2050-7518&rft_id=info:doi/10.1039/d2tb00682k&rft_dat=%3Crsc%3Ed2tb00682k%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |