Synthesis and characterization of an ultra-thin BiOCl/MXene heterostructure for the detection of NO at room temperature with enhanced moisture resistance

Two-dimensional ultrathin MXenes (Ti 3 C 2 T x ) have gained crucial attention in the field of gas sensing owing to their unique chemical and physical properties. Here, a hot-injection method is reported to uniformly decorate BiOCl nanosheets on the surface of an ultrathin MXene to synthesize a BiOC...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2022-12, Vol.1 (48), p.25714-25724
Hauptverfasser: Fan, Jiahui, Gao, Jun, Lv, He, Jiang, Lin, Qin, Fangjie, Fan, Yihe, Sun, Baihe, Wang, Jue, Ikram, Muhammad, Shi, Keying
Format: Artikel
Sprache:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25724
container_issue 48
container_start_page 25714
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 1
creator Fan, Jiahui
Gao, Jun
Lv, He
Jiang, Lin
Qin, Fangjie
Fan, Yihe
Sun, Baihe
Wang, Jue
Ikram, Muhammad
Shi, Keying
description Two-dimensional ultrathin MXenes (Ti 3 C 2 T x ) have gained crucial attention in the field of gas sensing owing to their unique chemical and physical properties. Here, a hot-injection method is reported to uniformly decorate BiOCl nanosheets on the surface of an ultrathin MXene to synthesize a BiOCl/MXene binary heterostructure. The interfacial contacts between the components promote carrier migration and space charge separation. The prepared BiOCl/Mxene sensor has a unique structure, excellent homogeneity, and good electronic performance, maintaining a high response of 30.54 at high humidity (RH = 80%) with detection limits as low as 50 ppb. Under dry conditions (RH = 25%) the sensor displayed an over 4.6 times higher response than that of the pure BiOCl material and showed a short response time of only 3.15 s, while the detection limit reached 30 ppb. The sensor retained long-term stability over 6 consecutive weeks accompanied by good selectivity towards NO 2 gas. Two-dimensional ultrathin MXenes (Ti 3 C 2 T x ) have gained crucial attention in the field of gas sensing owing to their unique chemical and physical properties.
doi_str_mv 10.1039/d2ta07924k
format Article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_d2ta07924k</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d2ta07924k</sourcerecordid><originalsourceid>FETCH-rsc_primary_d2ta07924k3</originalsourceid><addsrcrecordid>eNqFj7FOAzEMhiMEEhV0YUfyCxxNr6W9rFRULNChDGyVlfMpgbukcnxC5U14W9Kq0BEvv_X59y9bqZuxvhvriRnVpaCem3L6caYGpb7XxXxqZud_fVVdqmFK7zpXpfXMmIH6Xu-COEo-AYYarENGK8T-C8XHALHJHPpWGAtxPsCDXy3a0fMbBQJH2RmTcG-lZ4ImMuQwqDO3v-svK0ABjrEDoW5LjAfvpxcHFBwGSzV00acD5v0psofX6qLBNtHwqFfqdvn4ungqONnNln2HvNucXp78N_8BYN1dlA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Synthesis and characterization of an ultra-thin BiOCl/MXene heterostructure for the detection of NO at room temperature with enhanced moisture resistance</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Fan, Jiahui ; Gao, Jun ; Lv, He ; Jiang, Lin ; Qin, Fangjie ; Fan, Yihe ; Sun, Baihe ; Wang, Jue ; Ikram, Muhammad ; Shi, Keying</creator><creatorcontrib>Fan, Jiahui ; Gao, Jun ; Lv, He ; Jiang, Lin ; Qin, Fangjie ; Fan, Yihe ; Sun, Baihe ; Wang, Jue ; Ikram, Muhammad ; Shi, Keying</creatorcontrib><description>Two-dimensional ultrathin MXenes (Ti 3 C 2 T x ) have gained crucial attention in the field of gas sensing owing to their unique chemical and physical properties. Here, a hot-injection method is reported to uniformly decorate BiOCl nanosheets on the surface of an ultrathin MXene to synthesize a BiOCl/MXene binary heterostructure. The interfacial contacts between the components promote carrier migration and space charge separation. The prepared BiOCl/Mxene sensor has a unique structure, excellent homogeneity, and good electronic performance, maintaining a high response of 30.54 at high humidity (RH = 80%) with detection limits as low as 50 ppb. Under dry conditions (RH = 25%) the sensor displayed an over 4.6 times higher response than that of the pure BiOCl material and showed a short response time of only 3.15 s, while the detection limit reached 30 ppb. The sensor retained long-term stability over 6 consecutive weeks accompanied by good selectivity towards NO 2 gas. Two-dimensional ultrathin MXenes (Ti 3 C 2 T x ) have gained crucial attention in the field of gas sensing owing to their unique chemical and physical properties.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d2ta07924k</identifier><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2022-12, Vol.1 (48), p.25714-25724</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Fan, Jiahui</creatorcontrib><creatorcontrib>Gao, Jun</creatorcontrib><creatorcontrib>Lv, He</creatorcontrib><creatorcontrib>Jiang, Lin</creatorcontrib><creatorcontrib>Qin, Fangjie</creatorcontrib><creatorcontrib>Fan, Yihe</creatorcontrib><creatorcontrib>Sun, Baihe</creatorcontrib><creatorcontrib>Wang, Jue</creatorcontrib><creatorcontrib>Ikram, Muhammad</creatorcontrib><creatorcontrib>Shi, Keying</creatorcontrib><title>Synthesis and characterization of an ultra-thin BiOCl/MXene heterostructure for the detection of NO at room temperature with enhanced moisture resistance</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Two-dimensional ultrathin MXenes (Ti 3 C 2 T x ) have gained crucial attention in the field of gas sensing owing to their unique chemical and physical properties. Here, a hot-injection method is reported to uniformly decorate BiOCl nanosheets on the surface of an ultrathin MXene to synthesize a BiOCl/MXene binary heterostructure. The interfacial contacts between the components promote carrier migration and space charge separation. The prepared BiOCl/Mxene sensor has a unique structure, excellent homogeneity, and good electronic performance, maintaining a high response of 30.54 at high humidity (RH = 80%) with detection limits as low as 50 ppb. Under dry conditions (RH = 25%) the sensor displayed an over 4.6 times higher response than that of the pure BiOCl material and showed a short response time of only 3.15 s, while the detection limit reached 30 ppb. The sensor retained long-term stability over 6 consecutive weeks accompanied by good selectivity towards NO 2 gas. Two-dimensional ultrathin MXenes (Ti 3 C 2 T x ) have gained crucial attention in the field of gas sensing owing to their unique chemical and physical properties.</description><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFj7FOAzEMhiMEEhV0YUfyCxxNr6W9rFRULNChDGyVlfMpgbukcnxC5U14W9Kq0BEvv_X59y9bqZuxvhvriRnVpaCem3L6caYGpb7XxXxqZud_fVVdqmFK7zpXpfXMmIH6Xu-COEo-AYYarENGK8T-C8XHALHJHPpWGAtxPsCDXy3a0fMbBQJH2RmTcG-lZ4ImMuQwqDO3v-svK0ABjrEDoW5LjAfvpxcHFBwGSzV00acD5v0psofX6qLBNtHwqFfqdvn4ungqONnNln2HvNucXp78N_8BYN1dlA</recordid><startdate>20221213</startdate><enddate>20221213</enddate><creator>Fan, Jiahui</creator><creator>Gao, Jun</creator><creator>Lv, He</creator><creator>Jiang, Lin</creator><creator>Qin, Fangjie</creator><creator>Fan, Yihe</creator><creator>Sun, Baihe</creator><creator>Wang, Jue</creator><creator>Ikram, Muhammad</creator><creator>Shi, Keying</creator><scope/></search><sort><creationdate>20221213</creationdate><title>Synthesis and characterization of an ultra-thin BiOCl/MXene heterostructure for the detection of NO at room temperature with enhanced moisture resistance</title><author>Fan, Jiahui ; Gao, Jun ; Lv, He ; Jiang, Lin ; Qin, Fangjie ; Fan, Yihe ; Sun, Baihe ; Wang, Jue ; Ikram, Muhammad ; Shi, Keying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_d2ta07924k3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Jiahui</creatorcontrib><creatorcontrib>Gao, Jun</creatorcontrib><creatorcontrib>Lv, He</creatorcontrib><creatorcontrib>Jiang, Lin</creatorcontrib><creatorcontrib>Qin, Fangjie</creatorcontrib><creatorcontrib>Fan, Yihe</creatorcontrib><creatorcontrib>Sun, Baihe</creatorcontrib><creatorcontrib>Wang, Jue</creatorcontrib><creatorcontrib>Ikram, Muhammad</creatorcontrib><creatorcontrib>Shi, Keying</creatorcontrib><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Jiahui</au><au>Gao, Jun</au><au>Lv, He</au><au>Jiang, Lin</au><au>Qin, Fangjie</au><au>Fan, Yihe</au><au>Sun, Baihe</au><au>Wang, Jue</au><au>Ikram, Muhammad</au><au>Shi, Keying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis and characterization of an ultra-thin BiOCl/MXene heterostructure for the detection of NO at room temperature with enhanced moisture resistance</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2022-12-13</date><risdate>2022</risdate><volume>1</volume><issue>48</issue><spage>25714</spage><epage>25724</epage><pages>25714-25724</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Two-dimensional ultrathin MXenes (Ti 3 C 2 T x ) have gained crucial attention in the field of gas sensing owing to their unique chemical and physical properties. Here, a hot-injection method is reported to uniformly decorate BiOCl nanosheets on the surface of an ultrathin MXene to synthesize a BiOCl/MXene binary heterostructure. The interfacial contacts between the components promote carrier migration and space charge separation. The prepared BiOCl/Mxene sensor has a unique structure, excellent homogeneity, and good electronic performance, maintaining a high response of 30.54 at high humidity (RH = 80%) with detection limits as low as 50 ppb. Under dry conditions (RH = 25%) the sensor displayed an over 4.6 times higher response than that of the pure BiOCl material and showed a short response time of only 3.15 s, while the detection limit reached 30 ppb. The sensor retained long-term stability over 6 consecutive weeks accompanied by good selectivity towards NO 2 gas. Two-dimensional ultrathin MXenes (Ti 3 C 2 T x ) have gained crucial attention in the field of gas sensing owing to their unique chemical and physical properties.</abstract><doi>10.1039/d2ta07924k</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2022-12, Vol.1 (48), p.25714-25724
issn 2050-7488
2050-7496
language
recordid cdi_rsc_primary_d2ta07924k
source Royal Society Of Chemistry Journals 2008-
title Synthesis and characterization of an ultra-thin BiOCl/MXene heterostructure for the detection of NO at room temperature with enhanced moisture resistance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T22%3A32%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20and%20characterization%20of%20an%20ultra-thin%20BiOCl/MXene%20heterostructure%20for%20the%20detection%20of%20NO%20at%20room%20temperature%20with%20enhanced%20moisture%20resistance&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Fan,%20Jiahui&rft.date=2022-12-13&rft.volume=1&rft.issue=48&rft.spage=25714&rft.epage=25724&rft.pages=25714-25724&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d2ta07924k&rft_dat=%3Crsc%3Ed2ta07924k%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true