Heteroatoms (Si, B, N, and P) doped 2D monolayer MoS for NH gas detection

2D transition metal dichalcogenide MoS 2 monolayer quantum dots (MoS 2 -QD) and their doped boron (B@MoS 2 -QD), nitrogen (N@MoS 2 -QD), phosphorus (P@MoS 2 -QD), and silicon (Si@MoS 2 -QD) surfaces have been theoretically investigated using density functional theory (DFT) computation to understand...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2022-09, Vol.12 (4), p.25992-261
Hauptverfasser: Gber, Terkumbur E, Louis, Hitler, Owen, Aniekan E, Etinwa, Benjamin E, Benjamin, Innocent, Asogwa, Fredrick C, Orosun, Muyiwa M, Eno, Ededet A
Format: Artikel
Sprache:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 261
container_issue 4
container_start_page 25992
container_title RSC advances
container_volume 12
creator Gber, Terkumbur E
Louis, Hitler
Owen, Aniekan E
Etinwa, Benjamin E
Benjamin, Innocent
Asogwa, Fredrick C
Orosun, Muyiwa M
Eno, Ededet A
description 2D transition metal dichalcogenide MoS 2 monolayer quantum dots (MoS 2 -QD) and their doped boron (B@MoS 2 -QD), nitrogen (N@MoS 2 -QD), phosphorus (P@MoS 2 -QD), and silicon (Si@MoS 2 -QD) surfaces have been theoretically investigated using density functional theory (DFT) computation to understand their mechanistic sensing ability, such as conductivity, selectivity, and sensitivity toward NH 3 gas. The results from electronic properties showed that P@MoS 2 -QD had the lowest energy gap, which indicated an increase in electrical conductivity and better adsorption behavior. By carrying out comparative adsorption studies using m062-X, ωB97XD, B3LYP, and PBE0 methods at the 6-311G++(d,p) level of theory, the most negative values were observed from ωB97XD for the P@MoS 2 -QD surface, signifying the preferred chemisorption surface for NH 3 detection. The mechanistic studies provided in this study also indicate that the P@MoS 2 -QD dopant is a promising sensing material for monitoring ammonia gas in the real world. We hope this research work will provide informative knowledge for experimental researchers to realize the potential of MoS 2 dopants, specifically the P@MoS 2 -QD surface, as a promising candidate for sensors to detect gas. 2D transition metal dichalcogenide MoS 2 monolayer quantum dots (MoS 2 -QD) and their doped boron (B@MoS 2 -QD), nitrogen (N@MoS 2 -QD), phosphorus (P@MoS 2 -QD), and silicon (Si@MoS 2 -QD) counterparts are proposed as selective sensors for NH 3 gas.
doi_str_mv 10.1039/d2ra04028j
format Article
fullrecord <record><control><sourceid>rsc</sourceid><recordid>TN_cdi_rsc_primary_d2ra04028j</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d2ra04028j</sourcerecordid><originalsourceid>FETCH-rsc_primary_d2ra04028j3</originalsourceid><addsrcrecordid>eNqFjr8LgkAYho8gSMqlPfjGAq27045c-4UOSWC7HN4ZivrJnYv_fQ5BY-_yDA8PvISsGd0zGkQHxY2kIeWnekYcTkPhcyqiBXGtrek0cWRcMIcksR60QTlga2GbVR6cPUg9kJ2C5w4U9loBv0KLHTZy1AYemEGJBtIY3tKCmvpiqLBbkXkpG6vdL5dkc7-9LrFvbJH3pmqlGfPfreCf_wB2-jnQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Heteroatoms (Si, B, N, and P) doped 2D monolayer MoS for NH gas detection</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><source>PubMed Central Open Access</source><creator>Gber, Terkumbur E ; Louis, Hitler ; Owen, Aniekan E ; Etinwa, Benjamin E ; Benjamin, Innocent ; Asogwa, Fredrick C ; Orosun, Muyiwa M ; Eno, Ededet A</creator><creatorcontrib>Gber, Terkumbur E ; Louis, Hitler ; Owen, Aniekan E ; Etinwa, Benjamin E ; Benjamin, Innocent ; Asogwa, Fredrick C ; Orosun, Muyiwa M ; Eno, Ededet A</creatorcontrib><description>2D transition metal dichalcogenide MoS 2 monolayer quantum dots (MoS 2 -QD) and their doped boron (B@MoS 2 -QD), nitrogen (N@MoS 2 -QD), phosphorus (P@MoS 2 -QD), and silicon (Si@MoS 2 -QD) surfaces have been theoretically investigated using density functional theory (DFT) computation to understand their mechanistic sensing ability, such as conductivity, selectivity, and sensitivity toward NH 3 gas. The results from electronic properties showed that P@MoS 2 -QD had the lowest energy gap, which indicated an increase in electrical conductivity and better adsorption behavior. By carrying out comparative adsorption studies using m062-X, ωB97XD, B3LYP, and PBE0 methods at the 6-311G++(d,p) level of theory, the most negative values were observed from ωB97XD for the P@MoS 2 -QD surface, signifying the preferred chemisorption surface for NH 3 detection. The mechanistic studies provided in this study also indicate that the P@MoS 2 -QD dopant is a promising sensing material for monitoring ammonia gas in the real world. We hope this research work will provide informative knowledge for experimental researchers to realize the potential of MoS 2 dopants, specifically the P@MoS 2 -QD surface, as a promising candidate for sensors to detect gas. 2D transition metal dichalcogenide MoS 2 monolayer quantum dots (MoS 2 -QD) and their doped boron (B@MoS 2 -QD), nitrogen (N@MoS 2 -QD), phosphorus (P@MoS 2 -QD), and silicon (Si@MoS 2 -QD) counterparts are proposed as selective sensors for NH 3 gas.</description><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d2ra04028j</identifier><ispartof>RSC advances, 2022-09, Vol.12 (4), p.25992-261</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Gber, Terkumbur E</creatorcontrib><creatorcontrib>Louis, Hitler</creatorcontrib><creatorcontrib>Owen, Aniekan E</creatorcontrib><creatorcontrib>Etinwa, Benjamin E</creatorcontrib><creatorcontrib>Benjamin, Innocent</creatorcontrib><creatorcontrib>Asogwa, Fredrick C</creatorcontrib><creatorcontrib>Orosun, Muyiwa M</creatorcontrib><creatorcontrib>Eno, Ededet A</creatorcontrib><title>Heteroatoms (Si, B, N, and P) doped 2D monolayer MoS for NH gas detection</title><title>RSC advances</title><description>2D transition metal dichalcogenide MoS 2 monolayer quantum dots (MoS 2 -QD) and their doped boron (B@MoS 2 -QD), nitrogen (N@MoS 2 -QD), phosphorus (P@MoS 2 -QD), and silicon (Si@MoS 2 -QD) surfaces have been theoretically investigated using density functional theory (DFT) computation to understand their mechanistic sensing ability, such as conductivity, selectivity, and sensitivity toward NH 3 gas. The results from electronic properties showed that P@MoS 2 -QD had the lowest energy gap, which indicated an increase in electrical conductivity and better adsorption behavior. By carrying out comparative adsorption studies using m062-X, ωB97XD, B3LYP, and PBE0 methods at the 6-311G++(d,p) level of theory, the most negative values were observed from ωB97XD for the P@MoS 2 -QD surface, signifying the preferred chemisorption surface for NH 3 detection. The mechanistic studies provided in this study also indicate that the P@MoS 2 -QD dopant is a promising sensing material for monitoring ammonia gas in the real world. We hope this research work will provide informative knowledge for experimental researchers to realize the potential of MoS 2 dopants, specifically the P@MoS 2 -QD surface, as a promising candidate for sensors to detect gas. 2D transition metal dichalcogenide MoS 2 monolayer quantum dots (MoS 2 -QD) and their doped boron (B@MoS 2 -QD), nitrogen (N@MoS 2 -QD), phosphorus (P@MoS 2 -QD), and silicon (Si@MoS 2 -QD) counterparts are proposed as selective sensors for NH 3 gas.</description><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFjr8LgkAYho8gSMqlPfjGAq27045c-4UOSWC7HN4ZivrJnYv_fQ5BY-_yDA8PvISsGd0zGkQHxY2kIeWnekYcTkPhcyqiBXGtrek0cWRcMIcksR60QTlga2GbVR6cPUg9kJ2C5w4U9loBv0KLHTZy1AYemEGJBtIY3tKCmvpiqLBbkXkpG6vdL5dkc7-9LrFvbJH3pmqlGfPfreCf_wB2-jnQ</recordid><startdate>20220913</startdate><enddate>20220913</enddate><creator>Gber, Terkumbur E</creator><creator>Louis, Hitler</creator><creator>Owen, Aniekan E</creator><creator>Etinwa, Benjamin E</creator><creator>Benjamin, Innocent</creator><creator>Asogwa, Fredrick C</creator><creator>Orosun, Muyiwa M</creator><creator>Eno, Ededet A</creator><scope/></search><sort><creationdate>20220913</creationdate><title>Heteroatoms (Si, B, N, and P) doped 2D monolayer MoS for NH gas detection</title><author>Gber, Terkumbur E ; Louis, Hitler ; Owen, Aniekan E ; Etinwa, Benjamin E ; Benjamin, Innocent ; Asogwa, Fredrick C ; Orosun, Muyiwa M ; Eno, Ededet A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-rsc_primary_d2ra04028j3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gber, Terkumbur E</creatorcontrib><creatorcontrib>Louis, Hitler</creatorcontrib><creatorcontrib>Owen, Aniekan E</creatorcontrib><creatorcontrib>Etinwa, Benjamin E</creatorcontrib><creatorcontrib>Benjamin, Innocent</creatorcontrib><creatorcontrib>Asogwa, Fredrick C</creatorcontrib><creatorcontrib>Orosun, Muyiwa M</creatorcontrib><creatorcontrib>Eno, Ededet A</creatorcontrib><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gber, Terkumbur E</au><au>Louis, Hitler</au><au>Owen, Aniekan E</au><au>Etinwa, Benjamin E</au><au>Benjamin, Innocent</au><au>Asogwa, Fredrick C</au><au>Orosun, Muyiwa M</au><au>Eno, Ededet A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heteroatoms (Si, B, N, and P) doped 2D monolayer MoS for NH gas detection</atitle><jtitle>RSC advances</jtitle><date>2022-09-13</date><risdate>2022</risdate><volume>12</volume><issue>4</issue><spage>25992</spage><epage>261</epage><pages>25992-261</pages><eissn>2046-2069</eissn><abstract>2D transition metal dichalcogenide MoS 2 monolayer quantum dots (MoS 2 -QD) and their doped boron (B@MoS 2 -QD), nitrogen (N@MoS 2 -QD), phosphorus (P@MoS 2 -QD), and silicon (Si@MoS 2 -QD) surfaces have been theoretically investigated using density functional theory (DFT) computation to understand their mechanistic sensing ability, such as conductivity, selectivity, and sensitivity toward NH 3 gas. The results from electronic properties showed that P@MoS 2 -QD had the lowest energy gap, which indicated an increase in electrical conductivity and better adsorption behavior. By carrying out comparative adsorption studies using m062-X, ωB97XD, B3LYP, and PBE0 methods at the 6-311G++(d,p) level of theory, the most negative values were observed from ωB97XD for the P@MoS 2 -QD surface, signifying the preferred chemisorption surface for NH 3 detection. The mechanistic studies provided in this study also indicate that the P@MoS 2 -QD dopant is a promising sensing material for monitoring ammonia gas in the real world. We hope this research work will provide informative knowledge for experimental researchers to realize the potential of MoS 2 dopants, specifically the P@MoS 2 -QD surface, as a promising candidate for sensors to detect gas. 2D transition metal dichalcogenide MoS 2 monolayer quantum dots (MoS 2 -QD) and their doped boron (B@MoS 2 -QD), nitrogen (N@MoS 2 -QD), phosphorus (P@MoS 2 -QD), and silicon (Si@MoS 2 -QD) counterparts are proposed as selective sensors for NH 3 gas.</abstract><doi>10.1039/d2ra04028j</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier EISSN: 2046-2069
ispartof RSC advances, 2022-09, Vol.12 (4), p.25992-261
issn 2046-2069
language
recordid cdi_rsc_primary_d2ra04028j
source DOAJ Directory of Open Access Journals; PubMed Central; EZB Electronic Journals Library; PubMed Central Open Access
title Heteroatoms (Si, B, N, and P) doped 2D monolayer MoS for NH gas detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T15%3A51%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-rsc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heteroatoms%20(Si,%20B,%20N,%20and%20P)%20doped%202D%20monolayer%20MoS%20for%20NH%20gas%20detection&rft.jtitle=RSC%20advances&rft.au=Gber,%20Terkumbur%20E&rft.date=2022-09-13&rft.volume=12&rft.issue=4&rft.spage=25992&rft.epage=261&rft.pages=25992-261&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d2ra04028j&rft_dat=%3Crsc%3Ed2ra04028j%3C/rsc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true