Molecular template growth of organic heterojunctions to tailor visual neuroplasticity for high performance phototransistors with ultralow energy consumption

The optical and charge transport properties of organic semiconductors are strongly influenced by their morphology and molecular structures. Here we report the influence of a molecular template strategy on anisotropic control via weak epitaxial growth of a semiconducting channel for a dinaphtho[2,3-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale horizons 2023-05, Vol.8 (5), p.632-64
Hauptverfasser: Ercan, Ender, Hung, Chih-Chien, Li, Guan-Syuan, Yang, Yun-Fang, Lin, Yan-Cheng, Chen, Wen-Chang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 64
container_issue 5
container_start_page 632
container_title Nanoscale horizons
container_volume 8
creator Ercan, Ender
Hung, Chih-Chien
Li, Guan-Syuan
Yang, Yun-Fang
Lin, Yan-Cheng
Chen, Wen-Chang
description The optical and charge transport properties of organic semiconductors are strongly influenced by their morphology and molecular structures. Here we report the influence of a molecular template strategy on anisotropic control via weak epitaxial growth of a semiconducting channel for a dinaphtho[2,3- b :2′,3′- f ]thieno[3,2- b ]thiophene (DNTT)/ para -sexiphenyl ( p -6P) heterojunction. The aim is to improve charge transport and trapping, to enable tailoring of visual neuroplasticity. The proposed phototransistor devices, comprising a molecular heterojunction with optimized molecular template thickness, exhibited an excellent memory ratio ( I ON / I OFF ) and retention characteristics in response to light stimulation, owing to the enhanced orientation/packing of DNTT molecules and a favorable match between the LUMO/HOMO levels of p -6P and DNTT. The best performing heterojunction exhibits visual synaptic functionalities, including an extremely high pair-pulse facilitation index of ∼206%, ultralow energy consumption of 0.54 fJ, and zero-gate operation, under ultrashort pulse light stimulation to mimic human-like sensing, computing, and memory functions. An array of heterojunction photosynapses possess a high degree of visual pattern recognition and learning, to mimic the neuroplasticity of human brain activities through a rehearsal learning process. This study provides a guide to the design of molecular heterojunctions for tailoring high-performance photonic memory and synapses for neuromorphic computing and artificial intelligence systems. The molecular template growth of the heterojunction was studied to tailor neuroplasticity that exhibits a high pair-pulse facilitation index of ~206%, and ultralow energy consumption of 0.54 fJ to mimic human-like optical synapse and memory functions.
doi_str_mv 10.1039/d2nh00597b
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d2nh00597b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2783495512</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-99eeeba91956357d07fdf9303e7ded8264d29e4a898c00732cd0d3e6473aa6193</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhiMEolXphTvIEhdUacGxE38caSkUqcAFzpHXnmy8cuzgD1b7X_ixeNmySJxmNPPM-470Ns3zFr9pMZVvDfETxr3k60fNOcF9v2KcdY9Pfc_OmsuUthjjVrRcCvq0OaNMMMYpO29-fQ4OdHEqogzz4lQGtIlhlycURhTiRnmr0QQZYtgWr7MNPqEcUFbWhYh-2lSUQx5KDPU6Zatt3qOxria7mdACsfaz8hrQMoUcclQ-2ZRDTGhnq01xdeTCDoGHuNkjXQ3KvByMnjVPRuUSXD7Ui-b7h9tvN3er-68fP928u19pSnleSQkAayVb2TPac4P5aEZJMQVuwAjCOkMkdEpIoTHmlGiDDQXWcaoUayW9aF4fdZcYfhRIeZht0uCc8hBKGggXtJN935KKvvoP3YYSff1uIAILQjqGD4JXR0rHkFKEcViinVXcDy0eDrEN78mXuz-xXVf45YNkWc9gTujfkCrw4gjEpE_bf7nT3zHhoU4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2808224609</pqid></control><display><type>article</type><title>Molecular template growth of organic heterojunctions to tailor visual neuroplasticity for high performance phototransistors with ultralow energy consumption</title><source>Royal Society Of Chemistry Journals</source><creator>Ercan, Ender ; Hung, Chih-Chien ; Li, Guan-Syuan ; Yang, Yun-Fang ; Lin, Yan-Cheng ; Chen, Wen-Chang</creator><creatorcontrib>Ercan, Ender ; Hung, Chih-Chien ; Li, Guan-Syuan ; Yang, Yun-Fang ; Lin, Yan-Cheng ; Chen, Wen-Chang</creatorcontrib><description>The optical and charge transport properties of organic semiconductors are strongly influenced by their morphology and molecular structures. Here we report the influence of a molecular template strategy on anisotropic control via weak epitaxial growth of a semiconducting channel for a dinaphtho[2,3- b :2′,3′- f ]thieno[3,2- b ]thiophene (DNTT)/ para -sexiphenyl ( p -6P) heterojunction. The aim is to improve charge transport and trapping, to enable tailoring of visual neuroplasticity. The proposed phototransistor devices, comprising a molecular heterojunction with optimized molecular template thickness, exhibited an excellent memory ratio ( I ON / I OFF ) and retention characteristics in response to light stimulation, owing to the enhanced orientation/packing of DNTT molecules and a favorable match between the LUMO/HOMO levels of p -6P and DNTT. The best performing heterojunction exhibits visual synaptic functionalities, including an extremely high pair-pulse facilitation index of ∼206%, ultralow energy consumption of 0.54 fJ, and zero-gate operation, under ultrashort pulse light stimulation to mimic human-like sensing, computing, and memory functions. An array of heterojunction photosynapses possess a high degree of visual pattern recognition and learning, to mimic the neuroplasticity of human brain activities through a rehearsal learning process. This study provides a guide to the design of molecular heterojunctions for tailoring high-performance photonic memory and synapses for neuromorphic computing and artificial intelligence systems. The molecular template growth of the heterojunction was studied to tailor neuroplasticity that exhibits a high pair-pulse facilitation index of ~206%, and ultralow energy consumption of 0.54 fJ to mimic human-like optical synapse and memory functions.</description><identifier>ISSN: 2055-6756</identifier><identifier>ISSN: 2055-6764</identifier><identifier>EISSN: 2055-6764</identifier><identifier>DOI: 10.1039/d2nh00597b</identifier><identifier>PMID: 36866736</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Artificial intelligence ; Charge transport ; Energy consumption ; Epitaxial growth ; Heterojunctions ; Learning ; Molecular orbitals ; Molecular structure ; Optical properties ; Organic semiconductors ; Pattern recognition ; Phototransistors ; Stimulation ; Synapses ; Transport properties</subject><ispartof>Nanoscale horizons, 2023-05, Vol.8 (5), p.632-64</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-99eeeba91956357d07fdf9303e7ded8264d29e4a898c00732cd0d3e6473aa6193</citedby><cites>FETCH-LOGICAL-c337t-99eeeba91956357d07fdf9303e7ded8264d29e4a898c00732cd0d3e6473aa6193</cites><orcidid>0000-0003-3170-7220 ; 0000-0002-2914-6762 ; 0000-0003-4079-0273</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36866736$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ercan, Ender</creatorcontrib><creatorcontrib>Hung, Chih-Chien</creatorcontrib><creatorcontrib>Li, Guan-Syuan</creatorcontrib><creatorcontrib>Yang, Yun-Fang</creatorcontrib><creatorcontrib>Lin, Yan-Cheng</creatorcontrib><creatorcontrib>Chen, Wen-Chang</creatorcontrib><title>Molecular template growth of organic heterojunctions to tailor visual neuroplasticity for high performance phototransistors with ultralow energy consumption</title><title>Nanoscale horizons</title><addtitle>Nanoscale Horiz</addtitle><description>The optical and charge transport properties of organic semiconductors are strongly influenced by their morphology and molecular structures. Here we report the influence of a molecular template strategy on anisotropic control via weak epitaxial growth of a semiconducting channel for a dinaphtho[2,3- b :2′,3′- f ]thieno[3,2- b ]thiophene (DNTT)/ para -sexiphenyl ( p -6P) heterojunction. The aim is to improve charge transport and trapping, to enable tailoring of visual neuroplasticity. The proposed phototransistor devices, comprising a molecular heterojunction with optimized molecular template thickness, exhibited an excellent memory ratio ( I ON / I OFF ) and retention characteristics in response to light stimulation, owing to the enhanced orientation/packing of DNTT molecules and a favorable match between the LUMO/HOMO levels of p -6P and DNTT. The best performing heterojunction exhibits visual synaptic functionalities, including an extremely high pair-pulse facilitation index of ∼206%, ultralow energy consumption of 0.54 fJ, and zero-gate operation, under ultrashort pulse light stimulation to mimic human-like sensing, computing, and memory functions. An array of heterojunction photosynapses possess a high degree of visual pattern recognition and learning, to mimic the neuroplasticity of human brain activities through a rehearsal learning process. This study provides a guide to the design of molecular heterojunctions for tailoring high-performance photonic memory and synapses for neuromorphic computing and artificial intelligence systems. The molecular template growth of the heterojunction was studied to tailor neuroplasticity that exhibits a high pair-pulse facilitation index of ~206%, and ultralow energy consumption of 0.54 fJ to mimic human-like optical synapse and memory functions.</description><subject>Artificial intelligence</subject><subject>Charge transport</subject><subject>Energy consumption</subject><subject>Epitaxial growth</subject><subject>Heterojunctions</subject><subject>Learning</subject><subject>Molecular orbitals</subject><subject>Molecular structure</subject><subject>Optical properties</subject><subject>Organic semiconductors</subject><subject>Pattern recognition</subject><subject>Phototransistors</subject><subject>Stimulation</subject><subject>Synapses</subject><subject>Transport properties</subject><issn>2055-6756</issn><issn>2055-6764</issn><issn>2055-6764</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkU1v1DAQhiMEolXphTvIEhdUacGxE38caSkUqcAFzpHXnmy8cuzgD1b7X_ixeNmySJxmNPPM-470Ns3zFr9pMZVvDfETxr3k60fNOcF9v2KcdY9Pfc_OmsuUthjjVrRcCvq0OaNMMMYpO29-fQ4OdHEqogzz4lQGtIlhlycURhTiRnmr0QQZYtgWr7MNPqEcUFbWhYh-2lSUQx5KDPU6Zatt3qOxria7mdACsfaz8hrQMoUcclQ-2ZRDTGhnq01xdeTCDoGHuNkjXQ3KvByMnjVPRuUSXD7Ui-b7h9tvN3er-68fP928u19pSnleSQkAayVb2TPac4P5aEZJMQVuwAjCOkMkdEpIoTHmlGiDDQXWcaoUayW9aF4fdZcYfhRIeZht0uCc8hBKGggXtJN935KKvvoP3YYSff1uIAILQjqGD4JXR0rHkFKEcViinVXcDy0eDrEN78mXuz-xXVf45YNkWc9gTujfkCrw4gjEpE_bf7nT3zHhoU4</recordid><startdate>20230502</startdate><enddate>20230502</enddate><creator>Ercan, Ender</creator><creator>Hung, Chih-Chien</creator><creator>Li, Guan-Syuan</creator><creator>Yang, Yun-Fang</creator><creator>Lin, Yan-Cheng</creator><creator>Chen, Wen-Chang</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3170-7220</orcidid><orcidid>https://orcid.org/0000-0002-2914-6762</orcidid><orcidid>https://orcid.org/0000-0003-4079-0273</orcidid></search><sort><creationdate>20230502</creationdate><title>Molecular template growth of organic heterojunctions to tailor visual neuroplasticity for high performance phototransistors with ultralow energy consumption</title><author>Ercan, Ender ; Hung, Chih-Chien ; Li, Guan-Syuan ; Yang, Yun-Fang ; Lin, Yan-Cheng ; Chen, Wen-Chang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-99eeeba91956357d07fdf9303e7ded8264d29e4a898c00732cd0d3e6473aa6193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence</topic><topic>Charge transport</topic><topic>Energy consumption</topic><topic>Epitaxial growth</topic><topic>Heterojunctions</topic><topic>Learning</topic><topic>Molecular orbitals</topic><topic>Molecular structure</topic><topic>Optical properties</topic><topic>Organic semiconductors</topic><topic>Pattern recognition</topic><topic>Phototransistors</topic><topic>Stimulation</topic><topic>Synapses</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ercan, Ender</creatorcontrib><creatorcontrib>Hung, Chih-Chien</creatorcontrib><creatorcontrib>Li, Guan-Syuan</creatorcontrib><creatorcontrib>Yang, Yun-Fang</creatorcontrib><creatorcontrib>Lin, Yan-Cheng</creatorcontrib><creatorcontrib>Chen, Wen-Chang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale horizons</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ercan, Ender</au><au>Hung, Chih-Chien</au><au>Li, Guan-Syuan</au><au>Yang, Yun-Fang</au><au>Lin, Yan-Cheng</au><au>Chen, Wen-Chang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular template growth of organic heterojunctions to tailor visual neuroplasticity for high performance phototransistors with ultralow energy consumption</atitle><jtitle>Nanoscale horizons</jtitle><addtitle>Nanoscale Horiz</addtitle><date>2023-05-02</date><risdate>2023</risdate><volume>8</volume><issue>5</issue><spage>632</spage><epage>64</epage><pages>632-64</pages><issn>2055-6756</issn><issn>2055-6764</issn><eissn>2055-6764</eissn><abstract>The optical and charge transport properties of organic semiconductors are strongly influenced by their morphology and molecular structures. Here we report the influence of a molecular template strategy on anisotropic control via weak epitaxial growth of a semiconducting channel for a dinaphtho[2,3- b :2′,3′- f ]thieno[3,2- b ]thiophene (DNTT)/ para -sexiphenyl ( p -6P) heterojunction. The aim is to improve charge transport and trapping, to enable tailoring of visual neuroplasticity. The proposed phototransistor devices, comprising a molecular heterojunction with optimized molecular template thickness, exhibited an excellent memory ratio ( I ON / I OFF ) and retention characteristics in response to light stimulation, owing to the enhanced orientation/packing of DNTT molecules and a favorable match between the LUMO/HOMO levels of p -6P and DNTT. The best performing heterojunction exhibits visual synaptic functionalities, including an extremely high pair-pulse facilitation index of ∼206%, ultralow energy consumption of 0.54 fJ, and zero-gate operation, under ultrashort pulse light stimulation to mimic human-like sensing, computing, and memory functions. An array of heterojunction photosynapses possess a high degree of visual pattern recognition and learning, to mimic the neuroplasticity of human brain activities through a rehearsal learning process. This study provides a guide to the design of molecular heterojunctions for tailoring high-performance photonic memory and synapses for neuromorphic computing and artificial intelligence systems. The molecular template growth of the heterojunction was studied to tailor neuroplasticity that exhibits a high pair-pulse facilitation index of ~206%, and ultralow energy consumption of 0.54 fJ to mimic human-like optical synapse and memory functions.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>36866736</pmid><doi>10.1039/d2nh00597b</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3170-7220</orcidid><orcidid>https://orcid.org/0000-0002-2914-6762</orcidid><orcidid>https://orcid.org/0000-0003-4079-0273</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2055-6756
ispartof Nanoscale horizons, 2023-05, Vol.8 (5), p.632-64
issn 2055-6756
2055-6764
2055-6764
language eng
recordid cdi_rsc_primary_d2nh00597b
source Royal Society Of Chemistry Journals
subjects Artificial intelligence
Charge transport
Energy consumption
Epitaxial growth
Heterojunctions
Learning
Molecular orbitals
Molecular structure
Optical properties
Organic semiconductors
Pattern recognition
Phototransistors
Stimulation
Synapses
Transport properties
title Molecular template growth of organic heterojunctions to tailor visual neuroplasticity for high performance phototransistors with ultralow energy consumption
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A17%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20template%20growth%20of%20organic%20heterojunctions%20to%20tailor%20visual%20neuroplasticity%20for%20high%20performance%20phototransistors%20with%20ultralow%20energy%20consumption&rft.jtitle=Nanoscale%20horizons&rft.au=Ercan,%20Ender&rft.date=2023-05-02&rft.volume=8&rft.issue=5&rft.spage=632&rft.epage=64&rft.pages=632-64&rft.issn=2055-6756&rft.eissn=2055-6764&rft_id=info:doi/10.1039/d2nh00597b&rft_dat=%3Cproquest_rsc_p%3E2783495512%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2808224609&rft_id=info:pmid/36866736&rfr_iscdi=true