Molecular template growth of organic heterojunctions to tailor visual neuroplasticity for high performance phototransistors with ultralow energy consumption
The optical and charge transport properties of organic semiconductors are strongly influenced by their morphology and molecular structures. Here we report the influence of a molecular template strategy on anisotropic control via weak epitaxial growth of a semiconducting channel for a dinaphtho[2,3-...
Gespeichert in:
Veröffentlicht in: | Nanoscale horizons 2023-05, Vol.8 (5), p.632-64 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 64 |
---|---|
container_issue | 5 |
container_start_page | 632 |
container_title | Nanoscale horizons |
container_volume | 8 |
creator | Ercan, Ender Hung, Chih-Chien Li, Guan-Syuan Yang, Yun-Fang Lin, Yan-Cheng Chen, Wen-Chang |
description | The optical and charge transport properties of organic semiconductors are strongly influenced by their morphology and molecular structures. Here we report the influence of a molecular template strategy on anisotropic control
via
weak epitaxial growth of a semiconducting channel for a dinaphtho[2,3-
b
:2′,3′-
f
]thieno[3,2-
b
]thiophene (DNTT)/
para
-sexiphenyl (
p
-6P) heterojunction. The aim is to improve charge transport and trapping, to enable tailoring of visual neuroplasticity. The proposed phototransistor devices, comprising a molecular heterojunction with optimized molecular template thickness, exhibited an excellent memory ratio (
I
ON
/
I
OFF
) and retention characteristics in response to light stimulation, owing to the enhanced orientation/packing of DNTT molecules and a favorable match between the LUMO/HOMO levels of
p
-6P and DNTT. The best performing heterojunction exhibits visual synaptic functionalities, including an extremely high pair-pulse facilitation index of ∼206%, ultralow energy consumption of 0.54 fJ, and zero-gate operation, under ultrashort pulse light stimulation to mimic human-like sensing, computing, and memory functions. An array of heterojunction photosynapses possess a high degree of visual pattern recognition and learning, to mimic the neuroplasticity of human brain activities through a rehearsal learning process. This study provides a guide to the design of molecular heterojunctions for tailoring high-performance photonic memory and synapses for neuromorphic computing and artificial intelligence systems.
The molecular template growth of the heterojunction was studied to tailor neuroplasticity that exhibits a high pair-pulse facilitation index of ~206%, and ultralow energy consumption of 0.54 fJ to mimic human-like optical synapse and memory functions. |
doi_str_mv | 10.1039/d2nh00597b |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_rsc_primary_d2nh00597b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2783495512</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-99eeeba91956357d07fdf9303e7ded8264d29e4a898c00732cd0d3e6473aa6193</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhiMEolXphTvIEhdUacGxE38caSkUqcAFzpHXnmy8cuzgD1b7X_ixeNmySJxmNPPM-470Ns3zFr9pMZVvDfETxr3k60fNOcF9v2KcdY9Pfc_OmsuUthjjVrRcCvq0OaNMMMYpO29-fQ4OdHEqogzz4lQGtIlhlycURhTiRnmr0QQZYtgWr7MNPqEcUFbWhYh-2lSUQx5KDPU6Zatt3qOxria7mdACsfaz8hrQMoUcclQ-2ZRDTGhnq01xdeTCDoGHuNkjXQ3KvByMnjVPRuUSXD7Ui-b7h9tvN3er-68fP928u19pSnleSQkAayVb2TPac4P5aEZJMQVuwAjCOkMkdEpIoTHmlGiDDQXWcaoUayW9aF4fdZcYfhRIeZht0uCc8hBKGggXtJN935KKvvoP3YYSff1uIAILQjqGD4JXR0rHkFKEcViinVXcDy0eDrEN78mXuz-xXVf45YNkWc9gTujfkCrw4gjEpE_bf7nT3zHhoU4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2808224609</pqid></control><display><type>article</type><title>Molecular template growth of organic heterojunctions to tailor visual neuroplasticity for high performance phototransistors with ultralow energy consumption</title><source>Royal Society Of Chemistry Journals</source><creator>Ercan, Ender ; Hung, Chih-Chien ; Li, Guan-Syuan ; Yang, Yun-Fang ; Lin, Yan-Cheng ; Chen, Wen-Chang</creator><creatorcontrib>Ercan, Ender ; Hung, Chih-Chien ; Li, Guan-Syuan ; Yang, Yun-Fang ; Lin, Yan-Cheng ; Chen, Wen-Chang</creatorcontrib><description>The optical and charge transport properties of organic semiconductors are strongly influenced by their morphology and molecular structures. Here we report the influence of a molecular template strategy on anisotropic control
via
weak epitaxial growth of a semiconducting channel for a dinaphtho[2,3-
b
:2′,3′-
f
]thieno[3,2-
b
]thiophene (DNTT)/
para
-sexiphenyl (
p
-6P) heterojunction. The aim is to improve charge transport and trapping, to enable tailoring of visual neuroplasticity. The proposed phototransistor devices, comprising a molecular heterojunction with optimized molecular template thickness, exhibited an excellent memory ratio (
I
ON
/
I
OFF
) and retention characteristics in response to light stimulation, owing to the enhanced orientation/packing of DNTT molecules and a favorable match between the LUMO/HOMO levels of
p
-6P and DNTT. The best performing heterojunction exhibits visual synaptic functionalities, including an extremely high pair-pulse facilitation index of ∼206%, ultralow energy consumption of 0.54 fJ, and zero-gate operation, under ultrashort pulse light stimulation to mimic human-like sensing, computing, and memory functions. An array of heterojunction photosynapses possess a high degree of visual pattern recognition and learning, to mimic the neuroplasticity of human brain activities through a rehearsal learning process. This study provides a guide to the design of molecular heterojunctions for tailoring high-performance photonic memory and synapses for neuromorphic computing and artificial intelligence systems.
The molecular template growth of the heterojunction was studied to tailor neuroplasticity that exhibits a high pair-pulse facilitation index of ~206%, and ultralow energy consumption of 0.54 fJ to mimic human-like optical synapse and memory functions.</description><identifier>ISSN: 2055-6756</identifier><identifier>ISSN: 2055-6764</identifier><identifier>EISSN: 2055-6764</identifier><identifier>DOI: 10.1039/d2nh00597b</identifier><identifier>PMID: 36866736</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Artificial intelligence ; Charge transport ; Energy consumption ; Epitaxial growth ; Heterojunctions ; Learning ; Molecular orbitals ; Molecular structure ; Optical properties ; Organic semiconductors ; Pattern recognition ; Phototransistors ; Stimulation ; Synapses ; Transport properties</subject><ispartof>Nanoscale horizons, 2023-05, Vol.8 (5), p.632-64</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-99eeeba91956357d07fdf9303e7ded8264d29e4a898c00732cd0d3e6473aa6193</citedby><cites>FETCH-LOGICAL-c337t-99eeeba91956357d07fdf9303e7ded8264d29e4a898c00732cd0d3e6473aa6193</cites><orcidid>0000-0003-3170-7220 ; 0000-0002-2914-6762 ; 0000-0003-4079-0273</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36866736$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ercan, Ender</creatorcontrib><creatorcontrib>Hung, Chih-Chien</creatorcontrib><creatorcontrib>Li, Guan-Syuan</creatorcontrib><creatorcontrib>Yang, Yun-Fang</creatorcontrib><creatorcontrib>Lin, Yan-Cheng</creatorcontrib><creatorcontrib>Chen, Wen-Chang</creatorcontrib><title>Molecular template growth of organic heterojunctions to tailor visual neuroplasticity for high performance phototransistors with ultralow energy consumption</title><title>Nanoscale horizons</title><addtitle>Nanoscale Horiz</addtitle><description>The optical and charge transport properties of organic semiconductors are strongly influenced by their morphology and molecular structures. Here we report the influence of a molecular template strategy on anisotropic control
via
weak epitaxial growth of a semiconducting channel for a dinaphtho[2,3-
b
:2′,3′-
f
]thieno[3,2-
b
]thiophene (DNTT)/
para
-sexiphenyl (
p
-6P) heterojunction. The aim is to improve charge transport and trapping, to enable tailoring of visual neuroplasticity. The proposed phototransistor devices, comprising a molecular heterojunction with optimized molecular template thickness, exhibited an excellent memory ratio (
I
ON
/
I
OFF
) and retention characteristics in response to light stimulation, owing to the enhanced orientation/packing of DNTT molecules and a favorable match between the LUMO/HOMO levels of
p
-6P and DNTT. The best performing heterojunction exhibits visual synaptic functionalities, including an extremely high pair-pulse facilitation index of ∼206%, ultralow energy consumption of 0.54 fJ, and zero-gate operation, under ultrashort pulse light stimulation to mimic human-like sensing, computing, and memory functions. An array of heterojunction photosynapses possess a high degree of visual pattern recognition and learning, to mimic the neuroplasticity of human brain activities through a rehearsal learning process. This study provides a guide to the design of molecular heterojunctions for tailoring high-performance photonic memory and synapses for neuromorphic computing and artificial intelligence systems.
The molecular template growth of the heterojunction was studied to tailor neuroplasticity that exhibits a high pair-pulse facilitation index of ~206%, and ultralow energy consumption of 0.54 fJ to mimic human-like optical synapse and memory functions.</description><subject>Artificial intelligence</subject><subject>Charge transport</subject><subject>Energy consumption</subject><subject>Epitaxial growth</subject><subject>Heterojunctions</subject><subject>Learning</subject><subject>Molecular orbitals</subject><subject>Molecular structure</subject><subject>Optical properties</subject><subject>Organic semiconductors</subject><subject>Pattern recognition</subject><subject>Phototransistors</subject><subject>Stimulation</subject><subject>Synapses</subject><subject>Transport properties</subject><issn>2055-6756</issn><issn>2055-6764</issn><issn>2055-6764</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkU1v1DAQhiMEolXphTvIEhdUacGxE38caSkUqcAFzpHXnmy8cuzgD1b7X_ixeNmySJxmNPPM-470Ns3zFr9pMZVvDfETxr3k60fNOcF9v2KcdY9Pfc_OmsuUthjjVrRcCvq0OaNMMMYpO29-fQ4OdHEqogzz4lQGtIlhlycURhTiRnmr0QQZYtgWr7MNPqEcUFbWhYh-2lSUQx5KDPU6Zatt3qOxria7mdACsfaz8hrQMoUcclQ-2ZRDTGhnq01xdeTCDoGHuNkjXQ3KvByMnjVPRuUSXD7Ui-b7h9tvN3er-68fP928u19pSnleSQkAayVb2TPac4P5aEZJMQVuwAjCOkMkdEpIoTHmlGiDDQXWcaoUayW9aF4fdZcYfhRIeZht0uCc8hBKGggXtJN935KKvvoP3YYSff1uIAILQjqGD4JXR0rHkFKEcViinVXcDy0eDrEN78mXuz-xXVf45YNkWc9gTujfkCrw4gjEpE_bf7nT3zHhoU4</recordid><startdate>20230502</startdate><enddate>20230502</enddate><creator>Ercan, Ender</creator><creator>Hung, Chih-Chien</creator><creator>Li, Guan-Syuan</creator><creator>Yang, Yun-Fang</creator><creator>Lin, Yan-Cheng</creator><creator>Chen, Wen-Chang</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3170-7220</orcidid><orcidid>https://orcid.org/0000-0002-2914-6762</orcidid><orcidid>https://orcid.org/0000-0003-4079-0273</orcidid></search><sort><creationdate>20230502</creationdate><title>Molecular template growth of organic heterojunctions to tailor visual neuroplasticity for high performance phototransistors with ultralow energy consumption</title><author>Ercan, Ender ; Hung, Chih-Chien ; Li, Guan-Syuan ; Yang, Yun-Fang ; Lin, Yan-Cheng ; Chen, Wen-Chang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-99eeeba91956357d07fdf9303e7ded8264d29e4a898c00732cd0d3e6473aa6193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence</topic><topic>Charge transport</topic><topic>Energy consumption</topic><topic>Epitaxial growth</topic><topic>Heterojunctions</topic><topic>Learning</topic><topic>Molecular orbitals</topic><topic>Molecular structure</topic><topic>Optical properties</topic><topic>Organic semiconductors</topic><topic>Pattern recognition</topic><topic>Phototransistors</topic><topic>Stimulation</topic><topic>Synapses</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ercan, Ender</creatorcontrib><creatorcontrib>Hung, Chih-Chien</creatorcontrib><creatorcontrib>Li, Guan-Syuan</creatorcontrib><creatorcontrib>Yang, Yun-Fang</creatorcontrib><creatorcontrib>Lin, Yan-Cheng</creatorcontrib><creatorcontrib>Chen, Wen-Chang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale horizons</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ercan, Ender</au><au>Hung, Chih-Chien</au><au>Li, Guan-Syuan</au><au>Yang, Yun-Fang</au><au>Lin, Yan-Cheng</au><au>Chen, Wen-Chang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular template growth of organic heterojunctions to tailor visual neuroplasticity for high performance phototransistors with ultralow energy consumption</atitle><jtitle>Nanoscale horizons</jtitle><addtitle>Nanoscale Horiz</addtitle><date>2023-05-02</date><risdate>2023</risdate><volume>8</volume><issue>5</issue><spage>632</spage><epage>64</epage><pages>632-64</pages><issn>2055-6756</issn><issn>2055-6764</issn><eissn>2055-6764</eissn><abstract>The optical and charge transport properties of organic semiconductors are strongly influenced by their morphology and molecular structures. Here we report the influence of a molecular template strategy on anisotropic control
via
weak epitaxial growth of a semiconducting channel for a dinaphtho[2,3-
b
:2′,3′-
f
]thieno[3,2-
b
]thiophene (DNTT)/
para
-sexiphenyl (
p
-6P) heterojunction. The aim is to improve charge transport and trapping, to enable tailoring of visual neuroplasticity. The proposed phototransistor devices, comprising a molecular heterojunction with optimized molecular template thickness, exhibited an excellent memory ratio (
I
ON
/
I
OFF
) and retention characteristics in response to light stimulation, owing to the enhanced orientation/packing of DNTT molecules and a favorable match between the LUMO/HOMO levels of
p
-6P and DNTT. The best performing heterojunction exhibits visual synaptic functionalities, including an extremely high pair-pulse facilitation index of ∼206%, ultralow energy consumption of 0.54 fJ, and zero-gate operation, under ultrashort pulse light stimulation to mimic human-like sensing, computing, and memory functions. An array of heterojunction photosynapses possess a high degree of visual pattern recognition and learning, to mimic the neuroplasticity of human brain activities through a rehearsal learning process. This study provides a guide to the design of molecular heterojunctions for tailoring high-performance photonic memory and synapses for neuromorphic computing and artificial intelligence systems.
The molecular template growth of the heterojunction was studied to tailor neuroplasticity that exhibits a high pair-pulse facilitation index of ~206%, and ultralow energy consumption of 0.54 fJ to mimic human-like optical synapse and memory functions.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>36866736</pmid><doi>10.1039/d2nh00597b</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3170-7220</orcidid><orcidid>https://orcid.org/0000-0002-2914-6762</orcidid><orcidid>https://orcid.org/0000-0003-4079-0273</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2055-6756 |
ispartof | Nanoscale horizons, 2023-05, Vol.8 (5), p.632-64 |
issn | 2055-6756 2055-6764 2055-6764 |
language | eng |
recordid | cdi_rsc_primary_d2nh00597b |
source | Royal Society Of Chemistry Journals |
subjects | Artificial intelligence Charge transport Energy consumption Epitaxial growth Heterojunctions Learning Molecular orbitals Molecular structure Optical properties Organic semiconductors Pattern recognition Phototransistors Stimulation Synapses Transport properties |
title | Molecular template growth of organic heterojunctions to tailor visual neuroplasticity for high performance phototransistors with ultralow energy consumption |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A17%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20template%20growth%20of%20organic%20heterojunctions%20to%20tailor%20visual%20neuroplasticity%20for%20high%20performance%20phototransistors%20with%20ultralow%20energy%20consumption&rft.jtitle=Nanoscale%20horizons&rft.au=Ercan,%20Ender&rft.date=2023-05-02&rft.volume=8&rft.issue=5&rft.spage=632&rft.epage=64&rft.pages=632-64&rft.issn=2055-6756&rft.eissn=2055-6764&rft_id=info:doi/10.1039/d2nh00597b&rft_dat=%3Cproquest_rsc_p%3E2783495512%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2808224609&rft_id=info:pmid/36866736&rfr_iscdi=true |